A multi-objective evolutionary approach for generator scheduling

被引:8
作者
Li, Dapeng [1 ]
Das, Sanjoy [2 ]
Pahwa, Anil [2 ]
Deb, Kalyanmoy [3 ]
机构
[1] ERCOT, Austin, TX USA
[2] Kansas State Univ, ECE Dept, Manhattan, KS 66506 USA
[3] Michigan State Univ, ECE Dept, E Lansing, MI USA
关键词
Optimal generation scheduling; Unit commitment; Emission allowance; Multi-objective optimization; Genetic algorithm; UNIT-COMMITMENT PROBLEM; GENETIC ALGORITHM; ENVIRONMENTAL/ECONOMIC DISPATCH; OPTIMIZATION ALGORITHM; ECONOMIC-DISPATCH; NSGA-II; DESIGN; SYSTEM;
D O I
10.1016/j.eswa.2013.06.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel, two-phase approach for optimal generation scheduling, taking into account the environmental issue of emission allowance trading in addition to the economic issue of operation cost. In the first phase, hourly-optimal scheduling is done to simultaneously minimize operation cost, emission, and transmission loss, while satisfying constraints such as power balance, spinning reserve and power generation limits. In the second phase, the minimum up/down time and ramp up/down rate constraints are considered, and a set of 24-h optimal schedules is obtained using the outputs of the first phase. Simulation results indicate effectiveness of the proposed approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7647 / 7655
页数:9
相关论文
共 47 条
[1]   Environmental/economic power dispatch using multiobjective evolutionary algorithms [J].
Abido, MA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) :1529-1537
[2]  
Ah King RTF, 2006, 2006 IEEE INT C EV C, P946, DOI [10.1109/CEC.2006.1688412, DOI 10.1109/CEC.2006.1688412]
[3]   A simulated annealing-based multiobjective optimization algorithm: AMOSA [J].
Bandyopadhyay, Sanghamitra ;
Saha, Sriparna ;
Maulik, Ujjwal ;
Deb, Kalyanmoy .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (03) :269-283
[4]   Unit commitment by Lagrangian relaxation and genetic algorithms [J].
Cheng, CP ;
Liu, CW ;
Liu, GC .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (02) :707-714
[5]   A solution to the unit-commitment problem using integer-coded genetic algorithm [J].
Damousis, IG ;
Bakirtzis, AG ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) :1165-1172
[6]  
Das S., 2008, ENCY ARTIFICIAL INTE, V3, P1145
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]  
Deb K., 1995, Complex Systems, V9, P115
[9]  
Deb K., 1996, Computer Science and informatics, V26, P30
[10]   Scope of stationary multi-objective evolutionary optimization: a case study on a hydro-thermal power dispatch problem [J].
Deb, Kalyanmoy .
JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (04) :479-515