Exact renormalization group in Batalin-Vilkovisky theory

被引:3
|
作者
Zucchini, Roberto [1 ]
机构
[1] Univ Bologna, Ist Nazl Fis Nucl, Dipartimento Fis & Astron, Sez Bologna, Viale Berti Pichat 6-2, Bologna, Italy
来源
关键词
BRST Quantization; Differential and Algebraic Geometry; Renormalization Group; Topological Field Theories; QUANTUM-FIELD THEORY; MASTER EQUATION; QUANTIZATION; GEOMETRY; DIMENSIONS; ALGEBRA; MODELS;
D O I
10.1007/JHEP03(2018)132
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, inspired by the Costello's seminal work [11], we present a general formulation of exact renormalization group (RG) within the Batalin-Vilkovisky (BV) quantization scheme. In the spirit of effective field theory, the BV bracket and Laplacian structure as well as the BV effective action (EA) depend on an effective energy scale. The BV EA at a certain scale satisfies the BV quantum master equation at that scale. The RG flow of the EA is implemented by BV canonical maps intertwining the BV structures at different scales. Infinitesimally, this generates the BV exact renormalization group equation (RGE). We show that BV RG theory can be extended by augmenting the scale parameter space R to its shifted tangent bundle T[1]R. The extra odd direction in scale space allows for a BV RG supersymmetry that constrains the structure of the BV RGE bringing it to Polchinski's form [6]. We investigate the implications of BV RG supersymmetry in perturbation theory. Finally, we illustrate our findings by constructing free models of BV RG flow and EA exhibiting RG supersymmetry in the degree -1 symplectic framework and studying the perturbation theory thereof. We find in particular that the odd partner of effective action describes perturbatively the deviation of the interacting RG flow from its free counterpart.
引用
收藏
页数:35
相关论文
共 50 条