Direct transformation of coordinates for GPS positioning using the techniques of genetic programming and symbolic regression

被引:28
|
作者
Wu, Chih-Hung [1 ]
Chou, Hung-Ju [1 ]
Su, Wei-Han [2 ]
机构
[1] Natl Univ Kaohsiung, Dept Elect Engn, Kaohsiung, Taiwan
[2] Shu Te Univ, Dept Informat Management, Kaohsiung, Taiwan
关键词
Soft-computing; Symbolic regression; Genetic programming; GPS; Regression; Coordinate system;
D O I
10.1016/j.engappai.2008.02.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transformation of coordinates usually invokes level-wised processes wherein several sets of complicated equations are calculated. Unfortunately, the accuracy may be corrupted due to the accumulation of inevitable errors between the transformation processes. This paper presents a genetic-based method for generating regressive models for direct transformation from global positioning system (GPS) signals to 2-D coordinates. Since target coordinates for a GPS application can be obtained by using simpler transformation formulas, the computational costs and inaccuracy can be reduced. The proposed method, though does not exclude systematic errors due to the imperfection on defining the reference ellipsoid and the reliability of GPS receivers, effectively reduces the statistical errors when the accurate Cartesian coordinates are known from the independent sources. From the experimental results where the target datums TWD67 is investigated. it seems that the proposed method can serve as a direct and feasible solution to the transformation of GPS coordinates. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1347 / 1359
页数:13
相关论文
共 50 条
  • [1] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [2] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [3] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [4] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [5] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [6] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [7] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [8] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [9] A genetic approach for coordinate transformation test of GPS positioning
    Wu, Chih-Hung
    Chou, Hung-Ju
    Su, Wei-Han
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (02) : 297 - 301
  • [10] Lifetime Adaptation in Genetic Programming for the Symbolic Regression
    Merta, Jan
    Brandejsky, Tomas
    COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 : 339 - 346