Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization

被引:190
作者
Brackley, Chris A. [1 ]
Taylor, Stephen [2 ]
Papantonis, Argyris [3 ,4 ]
Cook, Peter R. [3 ]
Marenduzzo, Davide [1 ]
机构
[1] Univ Edinburgh, SUPA, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Oxford, Computat Res Biol Grp, Oxford OX1 3RE, England
[3] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
[4] Univ Cologne, Ctr Mol Med, D-50931 Cologne, Germany
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
polymer physics; Brownian dynamics; chromatin looping; nucleosome; MOLECULAR-DYNAMICS; ESCHERICHIA-COLI; CHROMATIN; TRANSCRIPTION; POLYELECTROLYTE; NANOPARTICLES; COMPACTION; IMINE); GENES; MODEL;
D O I
10.1073/pnas.1302950110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular dynamics simulations are used to model proteins that diffuse to DNA, bind, and dissociate; in the absence of any explicit interaction between proteins, or between templates, binding spontaneously induces local DNA compaction and protein aggregation. Small bivalent proteins form into rows [as on binding of the bacterial histone-like nucleoid-structuring protein (H-NS)], large proteins into quasi-spherical aggregates (as on nanoparticle binding), and cylinders with eight binding sites (representing octameric nucleosomal cores) into irregularly folded clusters (like those seen in nucleosomal strings). Binding of RNA polymerase II and a transcription factor (NF kappa B) to the appropriate sites on four human chromosomes generates protein clusters analogous to transcription factories, multiscale loops, and intrachromosomal contacts that mimic those found in vivo. We suggest that this emergent behavior of clustering is driven by an entropic bridging-induced attraction that minimizes bending and looping penalties in the template.
引用
收藏
页码:E3605 / E3611
页数:7
相关论文
共 45 条
[1]   INTERACTION BETWEEN PARTICLES SUSPENDED IN SOLUTIONS OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF POLYMER SCIENCE, 1958, 33 (126) :183-192
[2]   Complexity of chromatin folding is captured by the strings and binders switch model [J].
Barbieri, Mariano ;
Chotalia, Mita ;
Fraser, James ;
Lavitas, Liron-Mark ;
Dostie, Josee ;
Pombo, Ana ;
Nicodemi, Mario .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (40) :16173-16178
[3]   Aggregation of amphiphilic polymers in the presence of adhesive small colloidal particles [J].
Baulin, Vladimir A. ;
Johner, Albert ;
Bonet Avalos, Josep .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (17)
[4]   Animal Transcription Networks as Highly Connected, Quantitative Continua [J].
Biggin, Mark D. .
DEVELOPMENTAL CELL, 2011, 21 (04) :611-626
[5]   Organization of Transcription [J].
Chakalova, Lyubomira ;
Fraser, Peter .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (09) :a000729
[6]   Entropic organization of interphase chromosomes [J].
Cook, Peter R. ;
Marenduzzo, Davide .
JOURNAL OF CELL BIOLOGY, 2009, 186 (06) :825-834
[7]   Molecular biology - The organization of replication and transcription [J].
Cook, PR .
SCIENCE, 1999, 284 (5421) :1790-1795
[8]   Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation [J].
Dame, Remus T. ;
Noom, Maarten C. ;
Wuite, Gijs J. L. .
NATURE, 2006, 444 (7117) :387-390
[9]   Influence of mobile DNA-protein-DNA bridges on DNA configurations: Coarse-grained Monte-Carlo simulations [J].
de Vriesa, Renko .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (12)
[10]  
Doi M., 1986, THEORY POLYM DYNAMIC