Stability of Systems with Stochastic Delays and Applications to Genetic Regulatory Networks

被引:12
作者
Gomez, Marcella M. [1 ]
Sadeghpour, Mehdi [2 ]
Bennett, Matthew R. [3 ,4 ]
Orosz, Gabor [2 ]
Murray, Richard M. [5 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Rice Univ, Dept Comp & Math Sci, Houston, TX 77005 USA
[4] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
[5] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2016年 / 15卷 / 04期
基金
美国国家科学基金会;
关键词
stability; stochastic delay; systems biology; genetic networks; DIFFERENTIAL-EQUATIONS; TIME-DELAY; EXPONENTIAL STABILITY; SEMI-DISCRETIZATION; DYNAMICAL-SYSTEMS; STABILIZATION; NOISE; OSCILLATOR; BIFURCATION; ROBUST;
D O I
10.1137/15M1031965
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of systems with stochastically varying time delays are investigated in this paper. It is shown that the mean dynamics can be used to derive necessary conditions for the stability of equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive sufficient conditions for almost sure stability of equilibria. The results are summarized using stability charts that are obtained via semidiscretization. The theoretical methods are applied to simple gene regulatory networks where it is demonstrated that stochasticity in the delay can improve the stability of steady protein production.
引用
收藏
页码:1844 / 1873
页数:30
相关论文
共 55 条
  • [1] Anderson R., 1993, J Dynam Differential Equations, V5, P105
  • [2] [Anonymous], 2009, SURV TUTOR APPL MATH
  • [3] [Anonymous], 1995, Applied Mathematical Sciences
  • [4] Arkin A, 1998, GENETICS, V149, P1633
  • [5] ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
  • [6] Stabilization of dynamical systems by adding a colored noise
    Basak, GK
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 1107 - 1111
  • [7] Stability of Networked Control Systems With Uncertain Time-Varying Delays
    Cloosterman, Marieke B. G.
    van de Wouw, Nathan
    Heemels, W. P. M. H.
    Nijmeijer, Hendrik
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (07) : 1575 - 1580
  • [8] Del Vecchio D., 2014, BIOMOLECULAR FEEDBAC, DOI DOI 10.23943/PRINCETON/9780691161532.001.0001
  • [9] Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL
    Engelborghs, K
    Luzyanina, T
    Roose, D
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (01): : 1 - 21
  • [10] ON PERTURBATION OF THE KERNEL IN INFINITE DELAY SYSTEMS
    FARKAS, M
    STEPAN, G
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (02): : 153 - 156