A NEARLY TIGHT SUM-OF-SQUARES LOWER BOUND FOR THE PLANTED CLIQUE PROBLEM

被引:75
作者
Barak, Boaz [1 ]
Hopkins, Samuel [2 ]
Kelner, Jonathan [3 ]
Kothari, Pravesh K. [4 ,5 ]
Moitra, Ankur [3 ]
Potechin, Aaron [5 ]
机构
[1] Microsoft Res New England, Cambridge, MA 02142 USA
[2] Cornell Univ, Comp Sci, Ithaca, NY 14853 USA
[3] MIT, Sch Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Princeton Univ, Princeton, NJ 08540 USA
[5] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
sum-of-squares; planted clique; lower bound; INFORMATION-THEORY; COMPLEXITY;
D O I
10.1137/17M1138236
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that with high probability over the choice of a random graph G from the Erdos-Renyi distribution G(n,1/2), the n(O)((d))-time degree d sum-of-squares (SOS) semidefinite programming relaxation for the clique problem will give a value of at least n(1/2-c(d/ log n)1/2 )or some constant c > 0. This yields a nearly tight n(1)(/2-o(1)) bound on the value of this program for any degree d = o(logn). Moreover, we introduce a new framework that we call pseudocalibration to construct SOS lower bounds. This framework is inspired by taking a computational analogue of Bayesian probability theory. It yields a general recipe for constructing good pseudodistributions (i.e., dual certificates for the SOS semidefinite program) and sheds further light on the ways in which this hierarchy differs from others.
引用
收藏
页码:687 / 735
页数:49
相关论文
共 42 条
[41]  
Tao T., 2005, DICHOTOMY STRUCTURE
[42]  
2007, ACM S THEORY COMPUT, P496