Named Entity Recognition for Amharic Using Deep Learning

被引:0
|
作者
Gamback, Bjorn [1 ]
Sikdar, Utpal Kumar [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Comp Sci, NO-7491 Trondheim, Norway
关键词
Named Entity Recognition; Amharic; Under-resourced languages; Recurrent neural network; Long short term memory;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper describes a named entity recognition system for Amharic, an under-resourced language, using a recurrent neural network, a bi-directional long short term memory model to identify and classify tokens into six predefined classes: Person, Location, Organization, Time, Title, and Other (non-named entity tokens). Word vectors based on semantic information are built for all tokens using an unsupervised learning algorithm, word2vec. The word vectors were merged with a set of specifically developed language independent features and together fed to the neural network model to predict the classes of the words. When evaluated by 10-fold cross-validation, the created Amharic named entity recogniser achieved good average precision (77.2%), but did worse on recall (63.4%), for a 69.7% F-1-score.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Deep learning with language models improves named entity recognition for PharmaCoNER
    Cong Sun
    Zhihao Yang
    Lei Wang
    Yin Zhang
    Hongfei Lin
    Jian Wang
    BMC Bioinformatics, 22
  • [32] Urdu Named Entity Recognition: Corpus Generation and Deep Learning Applications
    Kanwal, Safia
    Malik, Kamran
    Shahzad, Khurram
    Aslam, Faisal
    Nawaz, Zubair
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (01)
  • [33] Enhancing Deep Learning with Embedded Features for Arabic Named Entity Recognition
    Lotfy, Ali
    Sabty, Caroline
    Abdennadher, Slim
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 4904 - 4912
  • [34] Deep learning with language models improves named entity recognition for PharmaCoNER
    Sun, Cong
    Yang, Zhihao
    Wang, Lei
    Zhang, Yin
    Lin, Hongfei
    Wang, Jian
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 1)
  • [35] Named Entity Recognition in Threat Intelligence Domain Based on Deep Learning
    Wang Y.
    Wang Z.-H.
    Li H.
    Huang W.-J.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2023, 44 (01): : 33 - 39
  • [36] A Deep Learning-Based Named Entity Recognition in Biomedical Domain
    Gopalakrishnan, Athira
    Soman, K. P.
    Premjith, B.
    EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY, ICERECT 2018, 2019, 545 : 517 - 526
  • [37] A Survey of Deep Learning for Named Entity Recognition in Chinese Social Media
    Liu, Jingxin
    Cheng, Jieren
    Wang, Ziyan
    Lou, Congqiang
    Shen, Chenli
    Sheng, Victor S.
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 573 - 582
  • [38] Named Entity Recognition through Deep Representation Learning and Weak Supervision
    Parker, Jerrod
    Yu, Shi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3828 - 3839
  • [39] Continual Learning for Named Entity Recognition
    Monaikul, Natawut
    Castellucci, Giuseppe
    Filice, Simone
    Rokhlenko, Oleg
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 13570 - 13577
  • [40] Ensemble Learning for Named Entity Recognition
    Speck, Rene
    Ngomo, Axel-Cyrille Ngonga
    SEMANTIC WEB - ISWC 2014, PT I, 2014, 8796 : 519 - 534