THE PROBABILISTIC ESTIMATES ON THE LARGEST AND SMALLEST q-SINGULAR VALUES OF RANDOM MATRICES

被引:2
作者
Lai, Ming-Jun [1 ]
Liu, Yang [2 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI USA
基金
美国国家科学基金会;
关键词
Random matrices; probability; pre-Gaussian random variable; generalized singular values; LARGEST EIGENVALUE; INVERTIBILITY; LIMIT; NORM;
D O I
10.1090/S0025-5718-2014-02895-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the q-singular values of random matrices with pre-Gaussian entries defined in terms of the l(q)-quasinorm with 0 < q <= 1. In this paper, we mainly consider the decay of the lower and upper tail probabilities of the largest q-singular value s(1)((q)), when the number of rows of the matrices becomes very large. Based on the results in probabilistic estimates on the largest q-singular value, we also give probabilistic estimates on the smallest q-singular value for pre-Gaussian random matrices.
引用
收藏
页码:1775 / 1794
页数:20
相关论文
共 31 条