Asymptotics of coupled solutions of the Kadomtsev-Petviashvili equation

被引:2
作者
Anders, I [1 ]
机构
[1] Inst Low Temp Phys, Div Math, UA-61164 Kharkov, Ukraine
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 333卷 / 09期
关键词
D O I
10.1016/S0764-4442(01)02070-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine a subset in R-2 and a measure on this set which allow to construct coupled non-localized solutions of the KP-I equation, which are connected by the change of variables (x, t) bar right arrow (-x, -t), and split into asymptotic solitons as t --> infinity in the neighbourhood of the leading edge of the solutions. The solitons corresponding to each of the solutions have different amplitudes and lines of constant phase. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:891 / 896
页数:6
相关论文
共 14 条
[1]   EVOLUTION OF PACKETS OF WATER-WAVES [J].
ABLOWITZ, MJ ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) :691-715
[2]   Soliton asymptotics of nondecaying solutions of the modified Kadomtsev-Petviashvili-I equation [J].
Anders, I ;
Boutet de Monvel, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (08) :3673-3690
[3]  
Anders I, 2000, J NONLINEAR MATH PHY, V7, P284, DOI 10.2991/jnmp.2000.7.3.3
[4]   CURVED ASYMPTOTIC SOLITONS OF KADOMTSEV-PETVIASHVILI-I AND MODIFIED KADOMTSEV-PETVIASHVILI-I EQUATIONS [J].
ANDERS, IA .
PHYSICA D, 1995, 87 (1-4) :160-167
[5]  
ANDERS IA, 1994, MAT FIZ ANAL GEOM, V1, P175
[6]  
ANDERSON PE, 1994, RECENT ADV CHEM PHYS, V1, P40
[7]  
[Anonymous], 1989, ELEMENTS THEORY FUNC
[8]  
DAVID D, 1989, STUD APPL MATH, V80, P1
[9]  
DAVID D, 1987, STUD APPL MATH, V76, P133
[10]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539