Nonlinear damping and dephasing in nanomechanical systems

被引:31
作者
Atalaya, Juan [1 ,7 ]
Kenny, Thomas W. [2 ]
Roukes, M. L. [3 ,4 ,5 ,6 ]
Dykman, M. I. [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[4] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[5] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[6] CALTECH, Dept Bioengn, Pasadena, CA 91125 USA
[7] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
MECHANICAL RESONATORS; FORCE DETECTION; MASS SENSOR; OSCILLATORS; ABSORPTION; GRAPHENE; RESOLUTION; FRICTION; CRYSTAL; SOLIDS;
D O I
10.1103/PhysRevB.94.195440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a microscopic theory of nonlinear damping and dephasing of low-frequency eigenmodes in nanomechanical and micromechanical systems. The mechanism of the both effects is scattering of thermally excited vibrational modes off the considered eigenmode. The scattering is accompanied by energy transfer of 2 (h) over bar omega(0) for nonlinear damping and is quasielastic for dephasing. We develop a formalism that allows studying both spatially uniform systems and systems with a strong nonuniformity, which is smooth on the typical wavelength of thermal modes but is pronounced on their mean free path. The formalism accounts for the decay of thermal modes, which plays amajor role in the nonlinear damping and dephasing. We identify the nonlinear analogs of the Landau-Rumer, thermoelastic, and Akhiezer mechanisms and find the dependence of the relaxation parameters on the temperature and the geometry of a system.
引用
收藏
页数:23
相关论文
共 71 条
  • [1] Akhieser A, 1939, J PHYS-USSR, V1, P277
  • [2] [Anonymous], 2009, Theory of Elasticity
  • [3] Frequency stabilization in nonlinear micromechanical oscillators
    Antonio, Dario
    Zanette, Damian H.
    Lopez, Daniel
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [4] Josephson photonics with a two-mode superconducting circuit
    Armour, A. D.
    Kubala, B.
    Ankerhold, J.
    [J]. PHYSICAL REVIEW B, 2015, 91 (18):
  • [5] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [6] Born M., 1999, Principles of optics, Vseventh
  • [7] Experimental exploration of the optomechanical attractor diagram and its dynamics
    Buters, F. M.
    Eerkens, H. J.
    Heeck, K.
    Weaver, M. J.
    Pepper, B.
    de Man, S.
    Bouwmeester, D.
    [J]. PHYSICAL REVIEW A, 2015, 92 (01):
  • [8] Multimode thermoelastic dissipation
    Chandorkar, Saurabh A.
    Candler, Robert N.
    Duwel, Amy
    Melamud, Renata
    Agarwal, Manu
    Goodson, Kenneth E.
    Kenny, Thomas W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (04)
  • [9] Chaste J, 2012, NAT NANOTECHNOL, V7, P300, DOI [10.1038/NNANO.2012.42, 10.1038/nnano.2012.42]
  • [10] Phonon counting and intensity interferometry of a nanomechanical resonator
    Cohen, Justin D.
    Meenehan, Sean M.
    MacCabe, Gregory S.
    Groeblacher, Simon
    Safavi-Naeini, Amir H.
    Marsili, Francesco
    Shaw, Matthew D.
    Painter, Oskar
    [J]. NATURE, 2015, 520 (7548) : 522 - 525