Intercalated complexes of 1T′-MoS2 nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution

被引:43
|
作者
Kwak, In Hye [1 ]
Kwon, Ik Seon [1 ]
Abbas, Hafiz Ghulam [2 ]
Seo, Jaemin [1 ]
Jung, Gabin [1 ]
Lee, Yeron [1 ]
Kim, Doyeon [1 ]
Ahn, Jae-Pyoung [3 ]
Park, Jeunghee [1 ]
Kang, Hong Seok [4 ]
机构
[1] Korea Univ, Dept Chem, Sejong 339700, South Korea
[2] Jeonbuk Natl Univ, Dept Nanosci & Nanotechnol, Chonju 560756, Chonbuk, South Korea
[3] Korea Inst Sci & Technol, Adv Anal Ctr, Seoul 136791, South Korea
[4] Jeonju Univ, Dept Nano & Adv Mat, Chonju 560759, Chonbuk, South Korea
关键词
ACTIVE EDGE SITES; MOS2; NANOSHEETS; MOLYBDENUM-DISULFIDE; SULFUR VACANCIES; TRANSITION; ELECTROCATALYSTS; PHASE; GENERATION; 1T-MOS2; PLANE;
D O I
10.1039/c8ta11085a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional layered MoS2 has recently been considered as an excellent catalyst for the water-splitting hydrogen evolution reaction (HER). Herein, we synthesize 1T' phase MoS2 that was intercalated with a series of alkylated p-phenylenediamines (PDs). The substituted N atoms produced S vacancies, leading to a composition of MoS2-2xNx (x = 0.1). The more abundant methyl groups induce a larger charge transfer, resulting in excellent HER performance: for tetramethyl PD, the overpotential is 0.15 V at 10 mA cm(-2) with a Tafel slope of 35 mV dec(-1). The catalytic activity of the complexes depends on the concentration of the intercalated molecules, showing an optimum at a concentration of 8 mol%. First-principles calculations showed that the intercalated complexes (1T' phase) having N atom-S vacancy (N-VS) pairs are stabilized by a large charge transfer from the PD molecules that is enhanced by the methyl groups (i.e., 0.40e-0.84e per molecule at 6.25 mol% intercalation). The charge transfer increases the density of states at and just above the Fermi level, thereby increasing the electron concentration at low cathodic bias. The active sites for the Volmer reaction are found to be N atoms in the proximal N-VS pairs. The activation barrier for the Heyrovsky reaction becomes higher at higher concentrations of the intercalants, suggesting that the experimental HER performance is also kinetically controlled.
引用
收藏
页码:2334 / 2343
页数:10
相关论文
共 50 条
  • [41] Superior Hydrogen Evolution Reaction Performance in 2H-MoS2 to that of 1T Phase
    Zhang, Wencui
    Liao, Xiaobin
    Pan, Xuelei
    Yan, Mengyu
    Li, Yanxi
    Tian, Xiaocong
    Zhao, Yan
    Xu, Lin
    Mai, Liqiang
    SMALL, 2019, 15 (31)
  • [42] Theoretical investigation on the hydrogen evolution reaction mechanism at MoS2 heterostructures: the essential role of the 1T/2H phase interface
    Zhang, Tian
    Zhu, Houyu
    Guo, Chen
    Cao, Shoufu
    Wu, Chi-Man Lawrence
    Wang, Zhaojie
    Lu, Xiaoqing
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (02) : 458 - 465
  • [43] Organic interlayers boost the activity of MoS2 toward hydrogen evolution by maintaining high 1T/2H phase ratio
    Goloveshkin, Alexander S.
    Lenenko, Natalia D.
    Buzin, Mikhail I.
    Zaikovskii, Vladimir I.
    Naumkin, Alexander V.
    Golub, Alexandre S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (28) : 10555 - 10565
  • [44] Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction
    Saseendran, Swathy B.
    Ashok, Anamika
    Asha, A. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (16) : 9579 - 9592
  • [45] Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase
    Shi, Shoupeng
    Gao, Daqiang
    Xia, Baorui
    Liu, Peitao
    Xue, Desheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (48) : 24414 - 24421
  • [46] Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts
    Cao, Yang
    ACS NANO, 2021, 15 (07) : 11014 - 11039
  • [47] Copper-linked 1T MoS2/Cu2O Heterostructure for Efficient Photocatalytic Hydrogen Evolution
    Yin Yage
    Wei Shuting
    Zhang Lei
    Guo Ziwang
    Huang Haihua
    Sai Shiran
    Wu Jiandong
    Xu Yanchao
    Liu Ying
    Zheng Lirong
    Fan Xiaofeng
    Cui Xiaoqiang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (06) : 1122 - 1127
  • [48] Fine-tuning interlayer spacing in MoS2 for enriching 1T phase via alkylated ammonium ions for electrocatalytic hydrogen evolution reaction
    Venkateshwaran, Selvaraj
    Josline, Mukkath Joseph
    Kumar, Sakkarapalayam Murugesan Senthil
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (12) : 8377 - 8390
  • [49] Synergistic effects of 1T MoS2 and interface engineering on hollow NiCoP nanorods for enhanced hydrogen evolution activity
    Luo, Qiaomei
    Sun, Lan
    Zhao, Yiwei
    Wang, Chen
    Xin, Hongqiang
    Li, Danyang
    Ma, Fei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 145 : 165 - 173
  • [50] Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets
    He, Mengci
    Kong, Fanpeng
    Yin, Geping
    Lv, Zhe
    Sun, Xiudong
    Shi, Hongyan
    Gao, Bo
    RSC ADVANCES, 2018, 8 (26): : 14369 - 14376