Intercalated complexes of 1T′-MoS2 nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution

被引:43
|
作者
Kwak, In Hye [1 ]
Kwon, Ik Seon [1 ]
Abbas, Hafiz Ghulam [2 ]
Seo, Jaemin [1 ]
Jung, Gabin [1 ]
Lee, Yeron [1 ]
Kim, Doyeon [1 ]
Ahn, Jae-Pyoung [3 ]
Park, Jeunghee [1 ]
Kang, Hong Seok [4 ]
机构
[1] Korea Univ, Dept Chem, Sejong 339700, South Korea
[2] Jeonbuk Natl Univ, Dept Nanosci & Nanotechnol, Chonju 560756, Chonbuk, South Korea
[3] Korea Inst Sci & Technol, Adv Anal Ctr, Seoul 136791, South Korea
[4] Jeonju Univ, Dept Nano & Adv Mat, Chonju 560759, Chonbuk, South Korea
关键词
ACTIVE EDGE SITES; MOS2; NANOSHEETS; MOLYBDENUM-DISULFIDE; SULFUR VACANCIES; TRANSITION; ELECTROCATALYSTS; PHASE; GENERATION; 1T-MOS2; PLANE;
D O I
10.1039/c8ta11085a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional layered MoS2 has recently been considered as an excellent catalyst for the water-splitting hydrogen evolution reaction (HER). Herein, we synthesize 1T' phase MoS2 that was intercalated with a series of alkylated p-phenylenediamines (PDs). The substituted N atoms produced S vacancies, leading to a composition of MoS2-2xNx (x = 0.1). The more abundant methyl groups induce a larger charge transfer, resulting in excellent HER performance: for tetramethyl PD, the overpotential is 0.15 V at 10 mA cm(-2) with a Tafel slope of 35 mV dec(-1). The catalytic activity of the complexes depends on the concentration of the intercalated molecules, showing an optimum at a concentration of 8 mol%. First-principles calculations showed that the intercalated complexes (1T' phase) having N atom-S vacancy (N-VS) pairs are stabilized by a large charge transfer from the PD molecules that is enhanced by the methyl groups (i.e., 0.40e-0.84e per molecule at 6.25 mol% intercalation). The charge transfer increases the density of states at and just above the Fermi level, thereby increasing the electron concentration at low cathodic bias. The active sites for the Volmer reaction are found to be N atoms in the proximal N-VS pairs. The activation barrier for the Heyrovsky reaction becomes higher at higher concentrations of the intercalants, suggesting that the experimental HER performance is also kinetically controlled.
引用
收藏
页码:2334 / 2343
页数:10
相关论文
共 50 条
  • [11] MoS2 Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction
    Li, Wenyue
    Zhang, Zhenyu
    Zhang, Wenjun
    Zou, Shouzhong
    ACS OMEGA, 2017, 2 (08): : 5087 - 5094
  • [12] Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction
    Attanayake, Nuwan H.
    Thenuwara, Akila C.
    Patra, Abhirup
    Aulin, Yaroslav V.
    Tran, Thi M.
    Chakraborty, Himanshu
    Borguet, Eric
    Klein, Michael L.
    Perdew, John P.
    Strongin, Daniel R.
    ACS ENERGY LETTERS, 2018, 3 (01): : 7 - 13
  • [13] Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis
    Qi, Kun
    Cui, Xiaoqiang
    Gu, Lin
    Yu, Shansheng
    Fan, Xiaofeng
    Luo, Mingchuan
    Xu, Shan
    Li, Ningbo
    Zheng, Lirong
    Zhang, Qinghua
    Ma, Jingyuan
    Gong, Yue
    Lv, Fan
    Wang, Kai
    Huang, Haihua
    Zhang, Wei
    Guo, Shaojun
    Zheng, Weitao
    Liu, Ping
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [14] Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution
    Huang, Yichao
    Sun, Yuanhui
    Zheng, Xueli
    Aoki, Toshihiro
    Pattengale, Brian
    Huang, Jier
    He, Xin
    Bian, Wei
    Younan, Sabrina
    Williams, Nicholas
    Hu, Jun
    Ge, Jingxuan
    Pu, Ning
    Yan, Xingxu
    Pan, Xiaoqing
    Zhang, Lijun
    Wei, Yongge
    Gu, Jing
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [15] Ruthenium Nanoparticles on Cobalt-Doped 1T′ Phase MoS2 Nanosheets for Overall Water Splitting
    Kwon, Ik Seon
    Debela, Tekalign Terfa
    Kwak, In Hye
    Park, Yun Chang
    Seo, Jaemin
    Shim, Ju Yong
    Yoo, Seung Jo
    Kim, Jin-Gyu
    Park, Jeunghee
    Kang, Hong Seok
    SMALL, 2020, 16 (13)
  • [16] Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution
    Liu, Zhipeng
    Zhao, Lei
    Liu, Yuhua
    Gao, Zhichao
    Yuan, Shisheng
    Li, Xiaotian
    Li, Nan
    Miao, Shiding
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 : 296 - 302
  • [17] Activating the MoS2 Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T' Structural Interfaces
    Zhao, Ni
    Wang, Lu
    Zhang, Zixiang
    Li, Youyong
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (45) : 42014 - 42020
  • [18] Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution
    Wang, Dezhi
    Su, Boyu
    Jiang, Yan
    Li, Lu
    Ng, Boon K.
    Wu, Zhuangzhi
    Liu, Fangyang
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 102 - 108
  • [19] Metallic 1T phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods
    Du, Ping
    Zhu, Yuanzhi
    Zhang, Junyang
    Xu, Danyun
    Peng, Wenchao
    Zhang, Guoliang
    Zhang, Fengbao
    Fan, Xiaobin
    RSC ADVANCES, 2016, 6 (78) : 74394 - 74399
  • [20] Modulating the Electronic Properties of MoS2 Nanosheets for Electrochemical Hydrogen Production: A Review
    Sun, Jianpeng
    Meng, Xiangchao
    ACS APPLIED NANO MATERIALS, 2021, 4 (11) : 11413 - 11427