Numerical calculations of the heat-transfer coefficient during solidification of alloys

被引:0
作者
Grzymkowski, R [1 ]
Slota, D [1 ]
机构
[1] Silesian Tech Univ, Math Inst, Gliwice, Poland
来源
MOVING BOUNDARIES VI: COMPUTATIONAL MODELLING OF FREE AND MOVING BOUNDARY PROBLEMS | 2001年 / 4卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, three-phase inverse Stefan problems are formulated and described by means of the optimization method. These problems consist in the reconstruction of the function which describes the coefficient of heat-transfer, when the positions of the moving solidus and liquidus interfaces are well-known. In numerical calculations the Nelder-Mead optimization method and the generalized alternating phase truncation method were used.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 22 条
[1]  
ALBERNY R, 1978, REV METALL-PARIS, V75, P353
[2]  
Albrecht J, 1982, NUMERICAL TREATMENT, P127
[3]   Regularization of a two-dimensional two-phase inverse Stefan problem [J].
Ang, DD ;
Dinh, APN ;
Thanh, DN .
INVERSE PROBLEMS, 1997, 13 (03) :607-619
[4]   A bidimensional inverse Stefan problem: Identification of boundary value [J].
Ang, DD ;
Dinh, APN ;
Thanh, DN .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (02) :227-240
[5]  
BENARD C, 1994, SYSTEM MODELLING OPT, P612
[6]  
Bunday B. D., 1984, BASIC OPTIMIZATION M
[7]  
COLOTN D, 1983, IMPROPERLY POSED PRO, P57
[8]   THE NUMERICAL-SOLUTION OF THE INVERSE STEFAN PROBLEM IN 2 SPACE VARIABLES [J].
COLTON, D ;
REEMTSEN, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) :996-1013
[9]   INVERSE STEFAN PROBLEM FOR HEAT EQUATION IN 2 SPACE VARIABLES [J].
COLTON, D .
MATHEMATIKA, 1974, 21 (42) :282-286
[10]  
Gorenflo R., 1995, INVERSE PROBLEMS APP, P45