A Modified Fast Recursive Hidden Nodes Selection Algorithm for ELM

被引:0
|
作者
Han, Min [1 ]
Wang, Xinying [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116023, Liaoning, Peoples R China
关键词
extreme learning machine; model selection; time series; prediction; EXTREME LEARNING-MACHINE; FUNCTION APPROXIMATION; FEEDFORWARD NETWORKS; IDENTIFICATION; INFORMATION; PREDICTION; SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extreme Learning Machine (ELM) is a new paradigm for using Single-hidden Layer Feedforward Networks (SLFNs) with a much simpler training method. The input weights and the bias of the hidden layer are randomly chosen and output weights are analytically determined. One of the open problems in ELM research is how to automatically determine network architectures for given tasks. In this paper, it is taken as a model selection problem, a modified fast recursive algorithm (MFRA) is introduced to quickly and efficiently estimate the contribution of each hidden layer node to the decrease of the net function, and then a leave one out (LOO) cross validation is used to select the optimal number of hidden layer nodes. Simulation results on both artificial and real world benchmark datasets indicate the effectiveness of the proposed method.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Fast recursive algorithm for a class of structured matrices
    Eidelman, Y
    APPLIED MATHEMATICS LETTERS, 2000, 13 (02) : 57 - 62
  • [32] A New Fast Recursive Matrix Multiplication Algorithm
    Jelfimova, L. D.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2019, 55 (04) : 547 - 551
  • [33] Recursive algorithm for fast GNSS orbit fitting
    Xue, Shuqiang
    Yang, Yuanxi
    GPS SOLUTIONS, 2016, 20 (02) : 151 - 157
  • [34] Optimal Controlled Nodes Selection for Fast Consensus
    Yang, Wen
    Wang, Ying
    Wang, Xiaofan
    Shi, Hongbo
    ASIAN JOURNAL OF CONTROL, 2016, 18 (03) : 932 - 944
  • [35] Recursive parameter estimation algorithm of the Dirichlet hidden Markov model
    Vaiciulyte, Jurate
    Sakalauskas, Leonidas
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 306 - 323
  • [36] A Recursive Learning Algorithm for Model Reduction of Hidden Markov Models
    Deng, Kun
    Mehta, Prashant G.
    Meyn, Sean P.
    Vidyasagar, Mathukumalli
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4674 - 4679
  • [37] Constructive hidden nodes selection of extreme learning machine for regression
    Lan, Yuan
    Soh, Yeng Chai
    Huang, Guang-Bin
    NEUROCOMPUTING, 2010, 73 (16-18) : 3191 - 3199
  • [38] Modified Fast Recursive Algorithm for Efficient MMSE-SIC Detection of the V-BLAST System
    Liu, Tsung-Hsien
    Liu, Yu-Lin Yeh
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (10) : 3713 - 3717
  • [39] Beamforming algorithm to fast track mobile nodes
    Guo Yan
    Li Ning
    Guo Li
    Su Zhaolong
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 478 - +
  • [40] MRF-RFS: A Modified Random Forest Recursive Feature Selection Algorithm for Nasopharyngeal Carcinoma Segmentation
    Fei, Yuchen
    Zhang, Fengyu
    Zu, Chen
    Hong, Mei
    Peng, Xingchen
    Xiao, Jianghong
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    METHODS OF INFORMATION IN MEDICINE, 2020, 59 (04/05) : 151 - 161