Characterizing memory requirements for queries over continuous data streams

被引:32
作者
Arasu, A [1 ]
Babcock, B [1 ]
Babu, S [1 ]
McAlister, J [1 ]
Widom, J [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
ACM TRANSACTIONS ON DATABASE SYSTEMS | 2004年 / 29卷 / 01期
关键词
algorithms; performance; theory; continuous queries; memory requirement; streams;
D O I
10.1145/974750.974756
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with continuous conjunctive queries with arithmetic comparisons and optional aggregation over multiple data streams. An algorithm is presented for determining whether or not any given query can be evaluated using a bounded amount of memory for all possible instances of the data streams. For queries that can be evaluated using bounded memory, an execution strategy based on constant-sized synopses of the data streams is proposed. For queries that cannot be evaluated using bounded memory, data stream scenarios are identified in which evaluating the queries requires memory linear in the size of the unbounded streams.
引用
收藏
页码:162 / 194
页数:33
相关论文
共 50 条
  • [41] EAGr: Supporting Continuous Ego-centric Aggregate Queries over Large Dynamic Graphs
    Mondal, Jayanta
    Deshpande, Amol
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 1335 - 1346
  • [42] Simultaneous sliding window join approach over multiple data streams
    Qian, Jiangbo
    Xu, Hongbing
    Wang, Yongli
    Liu, Xuejun
    Dong, Yisheng
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2005, 42 (10): : 1771 - 1778
  • [43] MetaStrider: Architectures for Scalable Memory-centric Reduction of Sparse Data Streams
    Srikanth, Sriseshan
    Jain, Anirudh
    Lennon, Joseph M.
    Conte, Thomas M.
    Debenedictis, Erik
    Cook, Jeanine
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2019, 16 (04)
  • [44] Drift-Aware Multi-Memory Model for Imbalanced Data Streams
    Abolfazli, Amir
    Ntoutsi, Eirini
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 878 - 885
  • [45] Continuous k nearest neighbor queries over large multi-attribute trajectories: a systematic approach
    Jianqiu Xu
    Ralf Hartmut Güting
    Yunjun Gao
    GeoInformatica, 2018, 22 : 723 - 766
  • [46] Skyline Queries over Incomplete Data - Error Models for Focused Crowd-Sourcing
    Lofi, Christoph
    El Maarry, Kinda
    Balke, Wolf-Tilo
    CONCEPTUAL MODELING, ER 2013, 2013, 8217 : 298 - +
  • [47] Uncertainty Oriented-Incremental Erasable Pattern Mining Over Data Streams
    Kim, Hanju
    Cho, Myungha
    Kim, Hyeonmo
    Baek, Yoonji
    Lee, Chanhee
    Ryu, Taewoong
    Kim, Heonho
    Park, Seungwan
    Kim, Doyoon
    Kim, Doyoung
    Kim, Sinyoung
    Vo, Bay
    Lin, Jerry Chun-Wei
    Pedrycz, Witold
    Yun, Unil
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (02): : 1451 - 1465
  • [48] Continuously Distinct Sampling over Centralized and Distributed High Speed Data Streams
    Wang, Pinghui
    Wang, Xiangyu
    Tao, Jing
    Zhang, Peng
    Guan, Xiaohong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019, 30 (02) : 300 - 314
  • [49] Efficient processing of multiple nested event pattern queries over multi-dimensional event streams based on a triaxial hierarchical model
    Xiao, Fuyuan
    Aritsugi, Masayoshi
    Wang, Qing
    Zhang, Rong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2016, 72 : 56 - 71
  • [50] Main-Memory Requirements of Big Data Applications on Commodity Server Platform
    Makrani, Hosein Mohammadi
    Rafatirad, Setareh
    Houmansadr, Amir
    Homayoun, Houman
    2018 18TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2018, : 653 - 660