Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry

被引:109
作者
Li, Xiuhan [1 ,2 ]
Yeh, Min-Hsin [1 ]
Lin, Zong-Hong [1 ,3 ]
Guo, Hengyu [1 ]
Yang, Po-Kang [1 ]
Wang, Jie [1 ]
Wang, Sihong [1 ]
Yu, Ruomeng [1 ]
Zhang, Tiejun [1 ]
Wang, Zhong Lin [1 ,4 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[3] Natl Tsing Hua Univ, Inst Biomed Engn, Hsinchu 30013, Taiwan
[4] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Au nanoparticles; micro total analysis system; microfluidics; self-powered sensor; triboelectric effect; CONTACT-ELECTRIFICATION; ENERGY; FLOW; NANOGENERATORS; SYSTEMS; FUTURE; SENSOR;
D O I
10.1021/acsnano.5b04486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Micro total analysis system (mu TAS) is one of the important tools for modern analytical sciences. In this paper, we not only propose the concept of integrating the self-powered triboelectric microfluidic nanosensor (TMN) with mu TAS, but also demonstrate that the developed system can be used as an in situ tool to quantify the flowing liquid for microfluidics and solution chemistry. The TMN automatically generates electric outputs when the fluid passing through it and the outputs are affected by the solution temperature, polarity, ionic concentration, and fluid flow velocity. The self-powered TMN can detect the flowing water velocity, position, reaction temperature, ethanol, and salt concentrations. We also integrate the TMNs in a mu TAS platform to directly characterize the synthesis of Au nanoparticles by a chemical reduction method.
引用
收藏
页码:11056 / 11063
页数:8
相关论文
共 39 条
[1]   Characterization of Microfluidic-Based Acoustic Sensor for Immersion Application [J].
Abd Rahman, Mohamad Faizal ;
Nawi, Mohd Norzaidi Mat ;
Abd Manaf, Asrulnizam ;
Arshad, Mohd Rizal .
IEEE SENSORS JOURNAL, 2015, 15 (03) :1559-1566
[2]   Dielectric constants of some organic solvent-water mixtures at various temperatures [J].
Akerlof, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1932, 54 :4125-4139
[3]   Future lab-on-a-chip technologies for interrogating individual molecules [J].
Craighead, Harold .
NATURE, 2006, 442 (7101) :387-393
[4]   Disposable microfluidic devices: fabrication, function, and application [J].
Fiorini, GS ;
Chiu, DT .
BIOTECHNIQUES, 2005, 38 (03) :429-446
[5]   Microfluidic platforms for lab-on-a-chip applications [J].
Haeberle, Stefan ;
Zengerle, Roland .
LAB ON A CHIP, 2007, 7 (09) :1094-1110
[6]   Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J].
Jana, NR ;
Gearheart, L ;
Murphy, CJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (19) :4065-4067
[7]   Microfluidics for drug discovery and development: From target selection to product lifecycle management [J].
Kang, Lifeng ;
Chung, Bong Geun ;
Langer, Robert ;
Khademhosseini, Ali .
DRUG DISCOVERY TODAY, 2008, 13 (1-2) :1-13
[8]   In situ microfluidic flow rate measurement based on near-field heterodyne grating method [J].
Katayama, Kenji ;
Uchimura, Hisato ;
Sakakibara, Hitomi ;
Kikutani, Yoshikuni ;
Kitamori, Takehiko .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (08)
[9]   Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV [J].
Kinoshita, Haruyuki ;
Kaneda, Shohei ;
Fujii, Teruo ;
Oshima, Marie .
LAB ON A CHIP, 2007, 7 (03) :338-346
[10]   Thermoelectric microfluidic sensor for bio-chemical applications [J].
Kopparthy, Varun Lingaiah ;
Tangutooru, Siva Mahesh ;
Nestorova, Gergana G. ;
Guilbeau, Eric J. .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 166 :608-615