Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes

被引:25
作者
DeValve, C. [1 ]
Pitchumani, R. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Adv Mat & Technol Lab, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Fiber-reinforced composites; Carbon nanotubes; Vibration; Finite element analysis; Rotating beam; Material damping; ACTIVE CONTROL; ENHANCEMENT; REDUCTION; DYNAMICS; ALGORITHM; LAW;
D O I
10.1016/j.compstruct.2013.12.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study presents a numerical model describing the vibration damping effects of carbon nanotubes (CNT's) embedded in the matrix of fiber-reinforced composite materials used in rotating structures. The energy dissipation from the incorporation of CNT's into the composite matrix is modeled with a stick-slip damping term to describe the interaction between the CNT's and surrounding matrix as the material deforms. A numerical model is developed using the Euler-Bernoulli beam equation in a rotating frame of reference and solved in a non-dimensional form using the finite element method. A parametric study is performed to examine the effects of various beam geometries, angular speed profiles, and CNT damping values on the vibration settling times of the numerically simulated beams. The results are illustrated in a dimensionless design space to demonstrate the use of CNT's for improving the vibration damping characteristics of a rotating composite beam. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 43 条
[21]   Dynamics and vibration damping behavior of advanced meso/nanoparticle-reinforced composites [J].
Kireitseu, M. V. ;
Tomlinson, G. R. ;
Ivanenko, A. V. ;
Bochkareva, L. V. .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2007, 14 (08) :603-617
[22]   Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material [J].
Kireitseu, Maksim ;
Hui, David ;
Tomlinson, Geoffrey .
COMPOSITES PART B-ENGINEERING, 2008, 39 (01) :128-138
[23]   Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites [J].
Koratkar, NA ;
Suhr, J ;
Joshi, A ;
Kane, RS ;
Schadler, LS ;
Ajayan, PM ;
Bartolucci, S .
APPLIED PHYSICS LETTERS, 2005, 87 (06)
[24]   Multifunctional structural reinforcement featuring carbon nanotube films [J].
Koratkar, NA ;
Wei, BQ ;
Ajayan, PM .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) :1525-1531
[25]  
Lass EA, 2003, MATER RES SOC SYMP P, V740, P371
[26]   Modeling of interfacial friction damping of carbon nanotube-based nanocomposites [J].
Lin, R. M. ;
Lu, C. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (08) :2996-3012
[27]  
Macioce P, 2003, SOUND VIB, V37, P8
[28]   Theoretical development and closed-form solution of nonlinear vibrations of a directly excited nanotube-reinforced composite cantilevered beam [J].
Mahmoodi, SN ;
Khadem, SE ;
Jalili, N .
ARCHIVE OF APPLIED MECHANICS, 2006, 75 (2-3) :153-163
[29]   Aeroelastic stability enhancement and vibration suppression in a composite helicopter rotor [J].
Murugan, S ;
Ganguli, R .
JOURNAL OF AIRCRAFT, 2005, 42 (04) :1013-1024
[30]   Higher-harmonic-control algorithm for helicopter vibration reduction revisited [J].
Patt, D ;
Liu, L ;
Chandrasekar, J ;
Bernstein, DS ;
Friedmann, PP .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2005, 28 (05) :918-930