Non-dictionary Aided Sparse Unmixing of Hyperspectral Images via Weighted Nonnegative Matrix Factorization

被引:3
作者
Salehani, Yaser Esmaeili [1 ]
Cheriet, Mohamed [1 ]
机构
[1] Univ Quebecs, ETS, Synchromedia Lab, Montreal, PQ, Canada
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017 | 2017年 / 10317卷
关键词
Hyperspectral images; Unmixing; Weighted nonnegative matrix factorization (WNMF); Sparse recovery; Non-dictionary aided; NMF;
D O I
10.1007/978-3-319-59876-5_66
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a method of blind (non-dictionary aided) sparse hyperspectral unmixing for the linear mixing model (LMM). In this method, both the spectral signatures of materials (end members) (SSoM) and their fractional abundances (FAs) are supposed to be unknown and the goal is to find the matrices represent SSoM and FAs. The proposed method employs a weighted version of the non-negative matrix factorization (WNMF) in order to mitigate the impact of pixels that suffer from a certain level of noise (i.e., low signal-to-noise-ratio (SNR) values). We formulate the WNMF problem thorough the regularized sparsity terms of FAs and use the multiplicative updating rules to solve the acquired optimization problem. The effectiveness of proposed method is shown through the simulations over real hyperspectral data set and compared with several competitive unmixing methods.
引用
收藏
页码:596 / 604
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 2010, P 2010 SIAM INT C DA
[2]  
[Anonymous], 2009, NONNEGATIVE MATRIX T
[3]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[4]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[5]  
Esmaeili Salehani Y., 2017, IEEE J SEL TOP APPL
[6]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[7]  
Ho N., 2007, IMAGE VISION C UNPUB
[8]  
Hoyer PO, 2004, J MACH LEARN RES, V5, P1457
[9]  
Hoyer PO, 2002, NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, P557, DOI 10.1109/NNSP.2002.1030067
[10]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039