Instrumental Variable Analysis for Estimation of Treatment Effects With Dichotomous Outcomes

被引:119
作者
Rassen, Jeremy A. [1 ]
Schneeweiss, Sebastian [1 ,2 ]
Glynn, Robert J. [1 ,3 ]
Mittleman, Murray A. [2 ,4 ]
Brookhart, M. Alan [1 ]
机构
[1] Brigham & Womens Hosp, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA 02120 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[4] Beth Israel Deaconess Med Ctr, Cardiovasc Epidemiol Res Unit, Boston, MA 02215 USA
关键词
antipsychotic agents; confounding factors (epidemiology); instrumental variable; pharmacoepidemiology; LOGISTIC-REGRESSION; CLINICAL-TRIALS; MODELS; RISK; DRUGS;
D O I
10.1093/aje/kwn299
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Instrumental variable analyses are increasingly used in epidemiologic studies. For dichotomous exposures and outcomes, the typical 2-stage least squares approach produces risk difference estimates rather than relative risk estimates and is criticized for assuming normally distributed errors. Using 2 example drug safety studies evaluated in 3 cohorts from Pennsylvania (1994-2003) and British Columbia, Canada (1996-2004), the authors compared instrumental variable techniques that yield relative risk and risk difference estimates and that are appropriate for dichotomous exposures and outcomes. Methods considered include probit structural equation models, 2-stage logistic models, and generalized method of moments estimators. Employing these methods, in the first study the authors observed relative risks ranging from 0.41 to 0.58 and risk differences ranging from -1.41 per 100 to -1.28 per 100; in the second, they observed relative risks of 1.38-2.07 and risk differences of 7.53-8.94; and in the third, they observed relative risks of 1.45-1.59 and risk differences of 3.88-4.84. The 2-stage logistic models showed standard errors up to 40% larger than those of the instrumental variable probit model. Generalized method of moments estimation produced substantially the same results as the 2-stage logistic method. Few substantive differences among the methods were observed, despite their reliance on distinct assumptions.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 50 条
  • [21] Doubly robust nonparametric instrumental variable estimators for survival outcomes
    Lee, Youjin
    Kennedy, Edward H.
    Mitra, Nandita
    BIOSTATISTICS, 2023, 24 (02) : 518 - 537
  • [22] Power calculator for instrumental variable analysis in pharmacoepidemiology
    Walker, Venexia M.
    Davies, Neil M.
    Windmeijer, Frank
    Burgess, Stephen
    Martin, Richard M.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2017, 46 (05) : 1627 - 1632
  • [23] Specification testing in nonparametric instrumental variable estimation
    Horowitz, Joel L.
    JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 383 - 396
  • [24] NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER MONOTONICITY
    Chetverikov, Denis
    Wilhelm, Daniel
    ECONOMETRICA, 2017, 85 (04) : 1303 - 1320
  • [25] Instrumental variable estimation in functional linear models
    Florens, Jean-Pierre
    Van Bellegem, Sebastien
    JOURNAL OF ECONOMETRICS, 2015, 186 (02) : 465 - 476
  • [26] Instrumental variable estimation of the causal hazard ratio
    Wang, Linbo
    Tchetgen, Eric Tchetgen
    Martinussen, Torben
    Vansteelandt, Stijn
    BIOMETRICS, 2023, 79 (02) : 539 - 550
  • [27] Instrumental variable estimation with heteroskedasticity and many instruments
    Hausman, Jerry A.
    Newey, Whitney K.
    Woutersen, Tiemen
    Chao, John C.
    Swanson, Norman R.
    QUANTITATIVE ECONOMICS, 2012, 3 (02) : 211 - 255
  • [28] An introduction to instrumental variable assumptions, validation and estimation
    Lousdal M.L.
    Emerging Themes in Epidemiology, 15 (1):
  • [29] Estimation of treatment effects in randomized trials with non-compliance and a dichotomous outcome
    van der Laan, Mark J.
    Hubbard, Alan
    Jewell, Nicholas P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 463 - 482
  • [30] Instrumental variable analysis to estimate treatment effects: a simulation study showing potential benefits of conditioning on hospital
    Ceyisakar, I. E.
    van Leeuwen, N.
    Steyerberg, E. W.
    Lingsma, H. F.
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)