Exploring Visual and Motion Saliency for Automatic Video Object Extraction

被引:41
作者
Li, Wei-Te [1 ,2 ]
Chang, Haw-Shiuan [3 ]
Lien, Kuo-Chin [4 ]
Chang, Hui-Tang [5 ]
Wang, Yu-Chiang Frank [3 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
[2] Univ Michigan, Program Robot & Autonomous Vehicles, Ann Arbor, MI 48109 USA
[3] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 11529, Taiwan
[4] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 10529, Taiwan
[5] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
Conditional random field (CRF); video object extraction (VOE); visual saliency;
D O I
10.1109/TIP.2013.2253483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a saliency-based video object extraction (VOE) framework. The proposed framework aims to automatically extract foreground objects of interest without any user interaction or the use of any training data (i.e., not limited to any particular type of object). To separate foreground and background regions within and across video frames, the proposed method utilizes visual and motion saliency information extracted from the input video. A conditional random field is applied to effectively combine the saliency induced features, which allows us to deal with unknown pose and scale variations of the foreground object (and its articulated parts). Based on the ability to preserve both spatial continuity and temporal consistency in the proposed VOE framework, experiments on a variety of videos verify that our method is able to produce quantitatively and qualitatively satisfactory VOE results.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 37 条
[1]   SALIENCY DETECTION USING MAXIMUM SYMMETRIC SURROUND [J].
Achanta, Radhakrishna ;
Suesstrunk, Sabine .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :2653-2656
[2]  
[Anonymous], 2001, P 18 INT C MACH LEAR
[3]  
[Anonymous], 2010, P IEEE C COMP VIS PA
[4]  
[Anonymous], 2007, PROC IEEE C COMPUT V, DOI 10.1109/CVPR.2007.383267
[5]  
[Anonymous], 2007, Computer Vision and Pattern Recognition (CVPR), IEEE Conference on
[6]  
[Anonymous], 2006, CVPR, DOI DOI 10.1109/CVPR.2006.69
[7]  
[Anonymous], P IEEE INT C MULT EX
[8]  
Bai X., P IEEE INT C COMP VI, P1
[9]  
Bouwmans T., 2008, Recent Patents Comput. Sci., V1, P219, DOI 10.2174/1874479610801030219
[10]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239