Modified projective phase synchronization of chaotic complex nonlinear systems

被引:39
作者
Mahmoud, Emad E. [1 ]
机构
[1] Sohag Univ, Fac Sci, Dept Math, Sohag 82524, Egypt
关键词
Modified projective phase synchronization; Chaotic; Lyapunov stability; Complex; LAG SYNCHRONIZATION; OSCILLATORS; ARRAYS; CHEN;
D O I
10.1016/j.matcom.2013.02.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces the concept of Modified Projective Phase Synchronization (MPPS) for interacting chaotic systems with complex variables. The idea is that the number of effective state variables can be increased by treating the real and imaginary parts separately. On the basis of the Lyapunov stability theory, a scheme is designed to realize the new form of chaotic synchronization, and we demonstrate how chaotic complex systems in a master-slave configuration can be synchronized to a constant scaling matrix. The speed and accuracy of the synchronization are illustrated by means of computer simulation. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 85
页数:17
相关论文
共 40 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]  
Anishchenko V. S., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P633, DOI 10.1142/S0218127492000756
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]  
Balanov A, 2009, SPRINGER SER SYNERG, P1
[5]   Antiphase synchronism in chaotic systems [J].
Cao, LY ;
Lai, YC .
PHYSICAL REVIEW E, 1998, 58 (01) :382-386
[6]   Observations of phase synchronization phenomena in one-dimensional arrays of coupled chaotic electronic circuits [J].
Dabrowski, A ;
Galias, Z ;
Ogorzalek, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (10) :2391-2398
[7]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[8]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[9]   BASIN BOUNDARY METAMORPHOSES - CHANGES IN ACCESSIBLE BOUNDARY ORBITS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1987, 24 (1-3) :243-262
[10]   DESYNCHRONIZATION BY PERIODIC-ORBITS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1995, 52 (02) :R1253-R1256