Application of one-step method to parameter estimation in ODE models

被引:9
|
作者
Dattner, Itai [1 ]
Gugushvili, Shota [2 ]
机构
[1] Univ Haifa, Dept Stat, 199 Aba Khoushy Ave, IL-3498838 Haifa, Israel
[2] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
基金
欧洲研究理事会;
关键词
non-linear least squares; ordinary differential equations; smooth and match estimator; integral estimator; Levenberg-Marquardt algorithm; one-step estimator; DIFFERENTIAL-EQUATIONS; EFFICIENT ESTIMATION; DYNAMICAL-SYSTEMS; IDENTIFICATION; OPTIMIZATION; INTEGRATION; INFERENCES; STABILITY;
D O I
10.1111/stan.12124
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study application of Le Cam's one-step method to parameter estimation in ordinary differential equation models. This computationally simple technique can serve as an alternative to numerical evaluation of the popular non-linear least squares estimator, which typically requires the use of a multistep iterative algorithm and repetitive numerical integration of the ordinary differential ev quation system. The one-step method starts from a preliminary root n-consistent estimator of the parameter of interest and next turns it into an asymptotic (as the sample size n -> infinity) equivalent of the least squares estimator through a numerically straightforward procedure. We demonstrate performance of the one-step estimator via extensive simulations and real data examples. The method enables the researcher to obtain both point and interval estimates. The preliminary root n-consistent estimator that we use depends on non-parametric smoothing, and we provide a data-driven methodology for choosing its tuning parameter and support it by theory. An easy implementation scheme of the one-step method for practical use is pointed out.
引用
收藏
页码:126 / 156
页数:31
相关论文
共 50 条
  • [1] One-step parameter identification using moving horizon states estimation method
    Legowo, A
    Okubo, H
    Muramatsu, E
    Tokutake, H
    AUTOMATIC CONTROL IN AEROSPACE 2001, 2002, : 235 - 239
  • [2] One-step estimation for varying coefficient models
    Tang, QG
    Wang, JD
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (02): : 198 - 213
  • [3] One-step estimation for varying coefficient models
    Qingguo Tang
    Jinde Wang
    Science in China Series A: Mathematics, 2005, 48 : 198 - 213
  • [4] One-step estimation for varying coefficient models
    TANG Qingguo WANG Jinde Department of Mathematics Nanjing University Nanjing China
    Institute of Sciences PLA University of Science and Technology Nanjing China
    ScienceinChina,SerA., 2005, Ser.A.2005 (02) : 198 - 213
  • [5] One-step estimation for varying coefficient models
    TANG Qingguo & WANG Jinde Department of Mathematics
    Institute of Sciences
    Science China Mathematics, 2005, (02) : 198 - 213
  • [6] One-step and two-step estimation in SFA models
    Schmidt, Peter
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2011, 36 (02) : 201 - 203
  • [7] One-step and two-step estimation in SFA models
    Peter Schmidt
    Journal of Productivity Analysis, 2011, 36 : 201 - 203
  • [8] PARAMETER-ESTIMATION BY INVERSE METHOD BASED ON ONE-STEP AND MULTISTEP OUTFLOW EXPERIMENTS
    CRESCIMANNO, G
    IOVINO, M
    GEODERMA, 1995, 68 (04) : 257 - 277
  • [9] Quick and easy one-step parameter estimation in differential equations
    Hall, Peter
    Ma, Yanyuan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (04) : 735 - 748
  • [10] Trend Agnostic One-Step Estimation of DSGE Models
    Ferroni, Filippo
    B E JOURNAL OF MACROECONOMICS, 2011, 11 (01):