Global stability of a diffusive predator-prey model with discontinuous harvesting policy

被引:9
作者
Zhang, Xuebing [1 ]
Zhao, Hongyong [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey model; Diffusive; Discontinuous harvesting policy; Global asymptotic stability; DYNAMICS; SYSTEM; BIFURCATION; EXISTENCE;
D O I
10.1016/j.aml.2020.106539
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a diffusive predator-prey system with discontinuous harvesting function under Neumann boundary conditions. Then the existence and some estimates of the positive solution of the system are acquired. Based on the differential inclusions theory, we discuss the existence of constant equilibrium. Finally, by constructing a suitable Lyapunov functional, we study the global asymptotic stability of the positive equilibrium. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Permanency in predator-prey models of Leslie type with ratio-dependent simplified Holling type-IV functional response [J].
Amirabad, H. Qolizadeh ;
RabieiMotlagh, O. ;
MohammadiNejad, H. M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 157 :63-76
[2]  
Aubin Jean-Pierre, 1984, Differential Inclusions
[3]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
[4]   Dynamical behavior for a class of predator-prey system with general functional response and discontinuous harvesting policy [J].
Cai, Zuowei ;
Huang, Lihong ;
Zhang, Lingling ;
Hu, Xiaolian .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :4679-4701
[5]   Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting [J].
Chang, Xiaoyuan ;
Wei, Junjie .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2012, 17 (04) :379-409
[6]   Achieving global convergence to an equilibrium population in predator-prey systems by the use of a discontinuous harvesting policy [J].
Costa, MIS ;
Kaszkurewicz, E ;
Bhaya, A ;
Hsu, L .
ECOLOGICAL MODELLING, 2000, 128 (2-3) :89-99
[7]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[8]   Impact of discontinuous harvesting on fishery dynamics in a stock-effort fishing model [J].
Guo, Zhenyuan ;
Zou, Xingfu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (02) :594-603
[9]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761
[10]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783