A subspace approach to error correcting output codes

被引:29
|
作者
Bagheri, Mohammad Ali [1 ,2 ]
Montazer, Gholam Ali [1 ]
Kabir, Ehsanollah [3 ]
机构
[1] Tarbiat Modares Univ, Sch Engn, Dept Informat Technol, Tehran, Iran
[2] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
[3] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran, Iran
关键词
Error correcting output codes; Multiclass classification; Feature subspace; Ensemble classification; MULTICLASS; CLASSIFICATION; BINARY;
D O I
10.1016/j.patrec.2012.09.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among the proposed methods to deal with multi-class classification problems, the error-correcting output codes (ECOCs) represents a powerful framework. A key factor in designing any ECOC matrix is the independency of the binary classifiers, without which the ECOC method would be ineffective. This paper proposes an efficient new approach to the classical ECOC design in order to improve independency among classifiers. The main idea of the proposed method is based on using different feature subsets for each binary classifier, named subspace ECOC. In addition to creating more independent classifiers in the proposed technique, ECOC matrices with longer codes can be built. The numerical experiments in this study compare the classification accuracy of subspace ECOC, classical ECOC, one-versus-one, and one-versus-all methods over a set of UCI machine learning repository datasets and two image vision applications. The results show that the proposed technique increases the classification accuracy in comparison with the state of the art coding methods. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:176 / 184
页数:9
相关论文
共 50 条
  • [1] Rough Set Subspace Error-Correcting Output Codes
    Bagheri, Mohammad Ali
    Gao, Qigang
    Escalera, Sergio
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 822 - 827
  • [2] Sensitive error correcting output codes
    Langford, J
    Beygelzimer, A
    LEARNING THEORY, PROCEEDINGS, 2005, 3559 : 158 - 172
  • [3] Online error correcting output codes
    Escalera, Sergio
    Masip, David
    Puertas, Eloi
    Radeva, Petia
    Pujol, Oriol
    PATTERN RECOGNITION LETTERS, 2011, 32 (03) : 458 - 467
  • [4] Deep Error Correcting Output Codes
    Zhong, Guoqiang
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Cheriet, Mohamed
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 250 - 255
  • [5] A study on Error Correcting Output Codes
    Pimenta, Edgar
    Gama, Joao
    2005 PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 218 - 223
  • [6] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [7] Deep Error-Correcting Output Codes
    Wang, Li-Na
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Zhong, Guoqiang
    ALGORITHMS, 2023, 16 (12)
  • [8] Decoding of ternary error correcting output codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 753 - 763
  • [9] Some comments on Error Correcting Output Codes
    Seok, Kyung Ha
    Cho, Daehycon
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 383 - 392
  • [10] Optimal Extension of Error Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2006, 146 : 28 - +