Nanograting formation on metals in air with interfering femtosecond laser pulses

被引:30
|
作者
Miyazaki, Kenzo [1 ,2 ]
Miyaji, Godai [1 ,3 ]
Inoue, Toshishige [1 ]
机构
[1] Kyoto Univ, Inst Adv Energy, Laser Sci Res Sect, Uji, Kyoto 6110011, Japan
[2] Miyazaki Univ, Ctr Collaborat Res & Community Cooperat, Miyazaki 8892192, Japan
[3] Tokyo Univ Agr & Technol, Dept Appl Phys, Koganei, Tokyo 1848588, Japan
关键词
PERIODIC NANOSTRUCTURE FORMATION; RIPPLE FORMATION; SURFACE-STRUCTURES; STAINLESS-STEEL; TITANIUM; SILICON; GENERATION; MECHANISM; ABLATION; FILMS;
D O I
10.1063/1.4928670
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is demonstrated that a homogeneous nanograting having the groove period much smaller than the laser wavelength (similar to 800 nm) can be fabricated on metals in air through ablation induced by interfering femtosecond laser pulses (100 fs at a repetition rate of 10 Hz). Morphological changes on stainless steel and Ti surfaces, observed with an increase in superimposed shots of the laser pulses at a low fluence, have shown that the nanograting is developed through bonding structure change at the interference fringes, plasmonic near-field ablation to create parallel grooves on the fringe, and subsequent excitation of surface plasmon polaritons to regulate the groove intervals at 1/3 or 1/4 of the fringe period over the whole irradiated area. Calculation for a model target having a thin oxide layer on the metal substrate reproduces well the observed groove periods and explains the mechanism for the nanograting formation. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Filamentation of interacting femtosecond laser pulses in air
    Y.-Y. Ma
    X. Lu
    T.-T. Xi
    Q.-H. Gong
    J. Zhang
    Applied Physics B, 2008, 93 : 463 - 468
  • [22] Filamentation of femtosecond laser pulses in turbulent air
    S.L. Chin
    A. Talebpour
    J. Yang
    S. Petit
    V.P. Kandidov
    O.G. Kosareva
    M.P. Tamarov
    Applied Physics B, 2002, 74 : 67 - 76
  • [23] Filamentation of femtosecond laser pulses in turbulent air
    Chin, SL
    Talebpour, A
    Yang, J
    Petit, S
    Kandidov, VP
    Kosareva, OG
    Tamarov, MP
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 74 (01): : 67 - 76
  • [24] Filamentation of interacting femtosecond laser pulses in air
    Ma, Y. -Y.
    Lu, X.
    Xi, T. -T.
    Gong, Q. -H.
    Zhang, J.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (2-3): : 463 - 468
  • [25] Dynamics of femtosecond laser pulses in air and in vacuum
    Kovachev, Lubomir
    Tunchev, Ivaylo
    14TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2007, 6604
  • [26] Hydrodynamic simulation of the ablation of metals by femtosecond laser pulses
    Colombier, JP
    Audouard, E
    Combis, P
    Bonneau, F
    Le Harzic, R
    HIGH-POWER LASER ABLATION V, PTS 1 AND 2, 2004, 5448 : 853 - 858
  • [27] Heat effects of metals ablated with femtosecond laser pulses
    Hirayama, Y
    Obara, M
    APPLIED SURFACE SCIENCE, 2002, 197 : 741 - 745
  • [28] Imprinting of a Homogeneous Nanograting with Femtosecond Laser Ablation
    Miyazaki, Kenzo
    Miyaji, Godai
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2013,
  • [29] Gold nanoparticles modification by femtosecond laser pulses in the air
    O. V. Chefonov
    D. S. Sitnikov
    I. V. Ilina
    M. S. Kotelev
    A. A. Novikov
    A. V. Ovchinnikov
    High Temperature, 2015, 53 : 605 - 608
  • [30] Control of Multiple Filamentation of Femtosecond Laser Pulses in Air
    D. V. Apeksimov
    Yu. E. Geints
    A. A. Zemlyanov
    A. M. Kabanov
    G. G. Matvienko
    V. K. Oshlakov
    Atmospheric and Oceanic Optics, 2020, 33 : 42 - 50