Equiangular lines, mutually unbiased bases, and spin models

被引:82
作者
Godsil, Chris [1 ]
Roy, Aidan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
STATE DETERMINATION; DIFFERENCE SETS; SPREADS; CODES;
D O I
10.1016/j.ejc.2008.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use difference sets to construct interesting sets of lines in complex space. Using (upsilon, k, 1)-difference sets, we obtain k(2) - k + 1 equiangular lines in C-k when k - 1 is a prime power. Using semiregular relative difference sets with parameters (k, n, k, lambda) we construct sets of n + 1 mutually unbiased bases in C-k. We show how to construct these difference sets from commutative semifields and that all known maximal sets of mutually unbiased bases can be obtained in this way, resolving a Conjecture about the monomiality of maximal sets. We also relate mutually unbiased bases to spin models. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 262
页数:17
相关论文
共 26 条
[1]   COMPLEX SEQUENCES WITH LOW PERIODIC CORRELATIONS [J].
ALLTOP, WO .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (03) :350-354
[2]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[3]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[4]  
Beth T., 1999, Encyclopedia of Mathematics and Its Applications, V69
[5]  
Boykin PO, 2007, QUANTUM INF COMPUT, V7, P371
[6]   Z(4)-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets [J].
Calderbank, AR ;
Cameron, PJ ;
Kantor, WM ;
Seidel, JJ .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 :436-480
[7]   Four-weight spin models and Jones pairs [J].
Chan, A ;
Godsil, C ;
Munemasa, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (06) :2305-2325
[8]   A survey of finite semifields [J].
Cordero, M ;
Wene, GP .
DISCRETE MATHEMATICS, 1999, 208 :125-137
[9]  
DELSARTE P, 1975, PHILIPS RES REP, V30, P91
[10]  
GODSIL C, MUTUALLY UNBIA UNPUB