On statistical limit points and the consistency of statistical convergence

被引:57
作者
Connor, J [1 ]
Kline, J [1 ]
机构
[1] OHIO UNIV,DEPT MATH,CHILLICOTHE,OH 45601
关键词
D O I
10.1006/jmaa.1996.0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article extends the concept of a statistical limit (cluster) point of a sequence x (as introduced by Fridy) to a T-statistical limit (cluster) point, where T is a nonnegative regular matrix summability method. These definitions are reformulated in the setting of beta N \ N. It is shown that for a bounded sequence x, the set of T-statistical cluster points of x forms a compact subset of R. It is also shown that, if T and R are two nonnegative regular summability matrices, then T-statistical convergence and R-statistical convergence are consistent if and only if the support sets of T and R have nonempty intersection. (C) 1996 Academic Press, Inc.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 17 条
[1]  
ATALLA R, 1970, P AM MATH SOC, V26, P437
[3]   STRONG INTEGRAL SUMMABILITY AND THE STONE-CECH COMPACTIFICATION OF THE HALF-LINE [J].
CONNOR, J ;
SWARDSON, MA .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 157 (02) :201-224
[4]  
CONNOR J, 1994, PAPERS GENERAL TOPOL, V104
[5]  
Connor J. S., 1990, Analysis, V10, P373, DOI DOI 10.1524/ANLY.1990.10.4.373
[6]  
ENGELKING R, 1977, U SERIES HIGHER MATH
[7]  
ERDOS P, 1989, P LOND MATH SOC, V59, P417
[8]   LACUNARY STATISTICAL CONVERGENCE [J].
FRIDY, JA ;
ORHAN, C .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 160 (01) :43-51
[9]   LACUNARY STATISTICAL SUMMABILITY [J].
FRIDY, JA ;
ORHAN, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (02) :497-504
[10]   STATISTICAL LIMIT POINTS [J].
FRIDY, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) :1187-1192