Spinning Brownian motion

被引:0
作者
Duarte, Mauricio A. [1 ]
机构
[1] Univ Andres Bello, Dept Matemat, Santiago, Chile
基金
美国国家科学基金会;
关键词
Stationary distribution; Stochastic differential equations; Excursion theory; Degenerate reflected diffusion; STOCHASTIC DIFFERENTIAL-EQUATIONS; STATIONARY DISTRIBUTIONS; BOUNDARY-CONDITIONS; OBLIQUE REFLECTION; DOMAINS;
D O I
10.1016/j.spa.2015.06.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove strong existence and uniqueness for a reflection process X in a smooth, bounded domain D that behaves like obliquely-reflected-Brownian-motion, except that the direction of reflection depends on a (spin) parameter S, which only changes when X is on the boundary of D according to a physical rule. The process (X, S) is a degenerate diffusion. We show uniqueness of the stationary distribution by using techniques based on excursions of X from partial derivative D, and an associated exit system. We also show that the process admits a submartingale formulation and use related results to show examples of the stationary distribution. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:4178 / 4203
页数:26
相关论文
共 18 条
[1]  
[Anonymous], PITMAN RES NOTES MAT
[2]  
[Anonymous], 1986, WILEY SERIES PROBABI
[3]  
[Anonymous], 1994, Princeton Mathematical Series
[4]   Stationary distributions for diffusions with inert drift [J].
Bass, Richard F. ;
Burdzy, Krzysztof ;
Chen, Zhen-Qing ;
Hairer, Martin .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) :1-47
[5]  
Blumenthal R. M., 1968, Pure and Applied Mathematics, V29
[6]   THE SKOROHOD OBLIQUE REFLECTION PROBLEM IN DOMAINS WITH CORNERS AND APPLICATION TO STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
COSTANTINI, C .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (01) :43-70
[7]   SDES WITH OBLIQUE REFLECTION ON NONSMOOTH DOMAINS [J].
DUPUIS, P ;
ISHII, H .
ANNALS OF PROBABILITY, 1993, 21 (01) :554-580
[8]   SDEs with oblique reflections on nonsmooth domains (vol 21, pg 554, 1993) [J].
Dupuis, Paul ;
Ishii, Hitoshi .
ANNALS OF PROBABILITY, 2008, 36 (05) :1992-1997
[9]   EXCURSIONS OF A MARKOV PROCESS [J].
GETOOR, RK .
ANNALS OF PROBABILITY, 1979, 7 (02) :244-266
[10]  
Harrison J. M., 1987, Stochastics, V22, P77, DOI 10.1080/17442508708833469