The elusive Heisenberg limit in quantum-enhanced metrology

被引:558
作者
Demkowicz-Dobrzanski, Rafal [1 ]
Kolodynski, Jan [1 ]
Guta, Madalin [2 ]
机构
[1] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
英国工程与自然科学研究理事会;
关键词
NOISE; STATES; MAPS;
D O I
10.1038/ncomms2067
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/root N shot noise factor with N being the number of probes ( photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss.
引用
收藏
页数:8
相关论文
共 58 条
  • [1] Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
  • [2] Stability of atomic clocks based on entangled atoms -: art. no. 230801
    André, A
    Sorensen, AS
    Lukin, MD
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (23) : 230801 - 1
  • [3] [Anonymous], 2011, CVX MATLAB SOFTWARE
  • [4] Quantum states made to measure
    Banaszek, Konrad
    Demkowicz-Dobrzanski, Rafal
    Walmsley, Ian A.
    [J]. NATURE PHOTONICS, 2009, 3 (12) : 673 - 676
  • [5] Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
  • [6] Optimal states and almost optimal adaptive measurements for quantum interferometry
    Berry, DW
    Wiseman, HM
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (24) : 5098 - 5101
  • [7] Generalized limits for single-parameter quantum estimation
    Boixo, Sergio
    Flammia, Steven T.
    Caves, Carlton M.
    Geremia, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (09)
  • [8] Optimal frequency measurements with maximally correlated states
    Bollinger, JJ
    Itano, WM
    Wineland, DJ
    Heinzen, DJ
    [J]. PHYSICAL REVIEW A, 1996, 54 (06): : R4649 - R4652
  • [9] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [10] QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER
    CAVES, CM
    [J]. PHYSICAL REVIEW D, 1981, 23 (08): : 1693 - 1708