Spatial-Spectral Involution MLP Network for Hyperspectral Image Classification

被引:17
作者
Shao, Yihao [1 ]
Liu, Jianjun [1 ]
Yang, Jinlong [1 ]
Wu, Zebin [2 ]
机构
[1] Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Kernel; Transformers; Data mining; Task analysis; Hyperspectral imaging; Convolution; Hyperspectral image (HSI) classification; involution; multilayer perceptron (MLP) like model; REMOTE-SENSING IMAGES; REPRESENTATION; SEGMENTATION; CNN;
D O I
10.1109/JSTARS.2022.3216590
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, more and more multilayer perceptron (MLP) like models have been proposed. Among them, CycleMLP is good at dense feature prediction tasks, which is potentially useful for hyperspectral image (HSI) classification. However, the receptive field of CycleMLP tends to be cross-shaped, which will lead to insufficient spatial information extraction. Additionally, most of the HSI classification methods only use information from single HSI data. Lack of diversity in the features of a single modality limits classification performance. To address these issues, a novel spatial-spectral involution MLP network (SSIN) is proposed for HSI classification. SSIN contains two paths for extracting different kinds of information, namely the image path and the coordinate path. In the image path, we combine the MLP structure with the involution operation and propose involution MLP (InvoMLP). It obtains the spatial kernel weights corresponding to each pixel individually, thus improving the spatial interaction capability. At the same time, InvoMLP has the same receptive field range as conventional convolution, i.e., a rectangular receptive field. In the coordinate path, we build a lightweight module for extracting information. Unlike the information of images, the coordinates are intuitive information about the location distribution. Considering that the coordinate information contains the global spatial distribution of HSI, fusing it with the image information could improve long-distance dependencies of feature maps. Experimental results on four HSI datasets illustrate that SSIN can outperform some state-of-the-art methods.
引用
收藏
页码:9293 / 9310
页数:18
相关论文
共 76 条
[1]   Deep Learning for Classification of Hyperspectral Data [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (02) :159-173
[2]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[3]   The use of morphological profiles in classification of data from urban areas [J].
Benediktsson, JA ;
Arnason, K ;
Pesaresi, A .
IEEE/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2001, :30-34
[4]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[5]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[6]  
Chen S., 2022, PROC INT C LEARN REP, P1
[7]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[8]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[9]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[10]   Extended profiles with morphological attribute filters for the analysis of hyperspectral data [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) :5975-5991