EC2Detect: Real-Time Online Video Object Detection in Edge-Cloud Collaborative IoT

被引:21
作者
Guo, Siyan [1 ,2 ]
Zhao, Cong [3 ]
Wang, Guiqin [1 ,4 ]
Yang, Jiaqing [2 ]
Yang, Shusen [1 ,5 ,6 ]
机构
[1] Xi An Jiao Tong Univ, Natl Engn Lab Big Data Analyt, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[3] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[4] Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[5] Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[6] Pazhou Lab, Ind Artificial Intelligence Ctr, Guangzhou 510335, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep learning; edge-cloud collaboration; online object detection; real-time video analytics; VISUAL TRACKING; ANALYTICS; NETWORKS; INTERNET; SYSTEM;
D O I
10.1109/JIOT.2022.3173685
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video object detection is a fundamental technology of intelligent video analytics for Internet of Things (IoT) applications. However, even with extraordinary detection accuracy, predominating solutions based on deep convolutional neural networks (DCNNs) cannot achieve real-time online object detection on video streams with a low end-to-end (E2E) response latency and therefore cannot be applied to proliferating latency-sensitive IoT applications like autonomous driving requiring large-scale intelligent video analytics. To address this issue, we present EC(2)Detect, an edge-cloud collaborative real-time online video object detection method. Specifically, we propose a tracking-assisted object detection architecture based on edge-cloud collaboration with keyframe selection, where the accurate but heavy object detection is conducted by the Cloud on sparse keyframes adaptively selected according to their semantic variation, and the lightweight object tracking is used to localize and identify objects in other frames at edge devices. Extensive experiments of our real-world prototype demonstrate that, EC(2)Detect significantly outperforms state-of-the-art methods in terms of processing speed (up to 4.77x faster), E2E latency (up to 8.12x lower), and edge-cloud bandwidth occupation (17x lower) with an acceptable mAP, which can effectively support large-scale intelligent video analytics in practice. Source code of EC Detect is available at https://github.com/ECCDetect/ECCDetect.
引用
收藏
页码:20382 / 20392
页数:11
相关论文
共 44 条
[1]   Mobile Edge Computing: A Survey [J].
Abbas, Nasir ;
Zhang, Yan ;
Taherkordi, Amir ;
Skeie, Tor .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01) :450-465
[2]  
Balestri T., 2018, PYTORCH DETECT RFCN
[3]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[4]   Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications [J].
Blanco-Filgueira, Beatriz ;
Garcia-Lesta, Daniel ;
Fernandez-Sanjurjo, Mauro ;
Manuel Brea, Victor ;
Lopez, Paula .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :5423-5431
[5]   Internet of Video Things: Next-Generation IoT With Visual Sensors [J].
Chen, Chang Wen .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) :6676-6685
[6]   Memory Enhanced Global-Local Aggregation for Video Object Detection [J].
Chen, Yihong ;
Cao, Yue ;
Hu, Han ;
Wang, Liwei .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :10334-10343
[7]  
Dai JF, 2016, ADV NEUR IN, V29
[8]   Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence [J].
Deng, Shuiguang ;
Zhao, Hailiang ;
Fang, Weijia ;
Yin, Jianwei ;
Dustdar, Schahram ;
Zomaya, Albert Y. .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) :7457-7469
[9]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[10]   Big Data Analytics for Event Detection in the IoT-Multicriteria Approach [J].
Granat, Janusz ;
Batalla, Jordi Mongay ;
Mavromoustakis, Constandinos X. ;
Mastorakis, George .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (05) :4418-4430