Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrodinger equations via the extended sinh-Gordon equation expansion method

被引:114
作者
Seadawy, Aly R. [1 ,2 ]
Kumar, Dipankar [3 ,4 ]
Chakrabarty, Anuz Kumar [5 ]
机构
[1] Taibah Univ, Fac Sci, Math Dept, Al Madinah Al Munawarah, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Math Dept, Bani Suwayf, Egypt
[3] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
[4] Bangabandhu Sheikh Mujibur Rahman Sci & Technol U, Dept Math, Gopalganj 8100, Bangladesh
[5] Daffodil Int Univ, Dept Gen Educ Dev, Dhaka, Bangladesh
关键词
KUNDU-ECKHAUS EQUATION; MODIFIED KUDRYASHOV METHOD; TRAVELING-WAVE SOLUTIONS; HIGHER-ORDER; DIFFERENTIAL-EQUATIONS; SHALLOW-WATER; DARK; BRIGHT; STABILITY; LAW;
D O I
10.1140/epjp/i2018-12027-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (2 + 1)-dimen sional hyperbolic and cubic-quintic nonlinear Schrodinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrodinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Jacobi elliptic solutions, solitons and other solutions for the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity [J].
Zayed, Elsayed M. E. ;
Al-Nowehy, Abdul-Ghani .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (11)
[32]   Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation [J].
Zayed, E. M. E. ;
Al-Nowehy, Abdul-Ghani .
OPTIK, 2016, 127 (12) :4970-4983
[33]   Analytical study of two nonlinear Schrodinger equations via optical soliton solutions [J].
Zafar, Asim ;
Raheel, Muhammad ;
Bekir, Ahmet ;
Fahad, Asfand ;
Qureshi, Muhammad Imran .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (28)
[34]   Rational function solutions of higher-order dispersive cubic-quintic nonlinear Schrodinger dynamical model and its applications in fiber optics [J].
Arshad, Muhammad ;
Yasin, Faisal ;
Aldosary, Saud Fahad ;
Rezazadeh, Hadi ;
Farman, Muhammad ;
Hosseinzadeh, Mohammad Ali .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) :5300-5314
[35]   Optical soliton solutions, explicit power series solutions and linear stability analysis of the quintic derivative nonlinear Schrodinger equation [J].
Liu, Wenhao ;
Zhang, Yufeng .
OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (03)
[36]   Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrodinger equation with distributed coefficients [J].
Dai, Chaoqing ;
Wang, Yueyue ;
Yan, Caijie .
OPTICS COMMUNICATIONS, 2010, 283 (07) :1489-1494
[37]   Optical solitons in the generalized space-time fractional cubic-quintic nonlinear Schrodinger equation with a PT-symmetric potential [J].
Manikandan, K. ;
Aravinthan, D. ;
Sudharsan, J. B. ;
Vadivel, R. .
OPTIK, 2022, 271
[38]   Double Loops and Pitchfork Symmetry Breaking Bifurcations of Optical Solitons in Nonlinear Fractional Schrodinger Equation with Competing Cubic-Quintic Nonlinearities [J].
Li, Pengfei ;
Dai, Chaoqing .
ANNALEN DER PHYSIK, 2020, 532 (08)
[39]   Optical soliton for perturbed nonlinear fractional Schrodinger equation by extended trial function method [J].
Nawaz, Badar ;
Rizvi, Syed Tahir Raza ;
Ali, Kashif ;
Younis, Muhammad .
OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (05)
[40]   Integrability of the coupled cubic-quintic complex Ginzburg-Landau equations and multiple-soliton solutions via mathematical methods [J].
Selima, Ehab S. ;
Seadawy, Aly R. ;
Yao, Xiaohua ;
Essa, F. A. .
MODERN PHYSICS LETTERS B, 2018, 32 (04)