Realistic loophole-free Bell test with atom-photon entanglement

被引:15
作者
Teo, C. [1 ]
Araujo, M. [2 ,3 ]
Quintino, M. T. [2 ,4 ]
Minar, J. [1 ]
Cavalcanti, D. [1 ,5 ]
Scarani, V. [1 ,6 ]
Terra Cunha, M. [7 ]
Franca Santos, M. [2 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[2] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[5] ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[6] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[7] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
基金
新加坡国家研究基金会; 奥地利科学基金会; 瑞士国家科学基金会;
关键词
VIOLATION; INEQUALITY;
D O I
10.1038/ncomms3104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The establishment of nonlocal correlations, guaranteed through the violation of a Bell inequality, is not only important from a fundamental point of view but constitutes the basis for device-independent quantum information technologies. Although several nonlocality tests have been conducted so far, all of them suffered from either locality or detection loopholes. Among the proposals for overcoming these problems are the use of atom-photon entanglement and hybrid photonic measurements (for example, photodetection and homodyning). Recent studies have suggested that the use of atom-photon entanglement can lead to Bell inequality violations with moderate transmission and detection efficiencies. Here we combine these ideas and propose an experimental setup realizing a simple atom-photon entangled state that can be used to obtain nonlocality when considering realistic experimental parameters including detection efficiencies and losses due to required propagation distances.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
Aljunid S. A., PREPRINT
[3]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[4]   Tests of Bell inequality with arbitrarily low photodetection efficiency and homodyne measurements [J].
Araujo, Mateus ;
Quintino, Marco Tulio ;
Cavalcanti, Daniel ;
Santos, Marcelo Franca ;
Cabello, Adan ;
Cunha, Marcelo Terra .
PHYSICAL REVIEW A, 2012, 86 (03)
[5]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[6]   Device-independent state estimation based on Bell's inequalities [J].
Bardyn, C. -E. ;
Liew, T. C. H. ;
Massar, S. ;
McKague, M. ;
Scarani, V. .
PHYSICAL REVIEW A, 2009, 80 (06)
[7]   Photon blockade in an optical cavity with one trapped atom [J].
Birnbaum, KM ;
Boca, A ;
Miller, R ;
Boozer, AD ;
Northup, TE ;
Kimble, HJ .
NATURE, 2005, 436 (7047) :87-90
[8]   Robust nonlocality tests with displacement-based measurements [J].
Bohr Brask, Jonatan ;
Chaves, Rafael .
PHYSICAL REVIEW A, 2012, 86 (01)
[9]   Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2009, 79 (01)
[10]   Bell tests for continuous-variable systems using hybrid measurements and heralded amplifiers [J].
Brask, Jonatan Bohr ;
Brunner, Nicolas ;
Cavalcanti, Daniel ;
Leverrier, Anthony .
PHYSICAL REVIEW A, 2012, 85 (04)