Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

被引:1557
作者
Zhang, Linfeng [1 ]
Han, Jiequn [1 ]
Wang, Han [2 ,3 ]
Car, Roberto [4 ]
Weinan, E. [5 ,6 ,7 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] Inst Appl Phys & Computat Math, Fenghao East Rd 2, Beijing 100094, Peoples R China
[3] CAEP Software Ctr High Performance Numer Simulat, Huayuan Rd 6, Beijing 100088, Peoples R China
[4] Princeton Univ, Princeton Inst Sci & Technol Mat, Dept Chem, Dept Phys,Program Appl & Computat Math, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[6] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[7] Peking Univ, Beijing Int Ctr Math Res, Ctr Data Sci, Beijing Inst Big Data Res, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
FORCE-FIELD; SIMULATION; ORDER;
D O I
10.1103/PhysRevLett.120.143001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.
引用
收藏
页数:6
相关论文
共 40 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[4]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[5]  
Bengio Y., 2006, ADV NEURAL INFORM PR, V19
[6]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[7]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[8]   QUANTUM MONTE-CARLO [J].
CEPERLEY, D ;
ALDER, B .
SCIENCE, 1986, 231 (4738) :555-560
[9]   i-PI: A Python']Python interface for ab initio path integral molecular dynamics simulations [J].
Ceriotti, Michele ;
More, Joshua ;
Manolopoulos, David E. .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (03) :1019-1026
[10]   Accelerating the convergence of path integral dynamics with a generalized Langevin equation [J].
Ceriotti, Michele ;
Manolopoulos, David E. ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)