Fixed point theorems for cyclic self-maps involving weaker Meir-Keeler functions in complete metric spaces and applications

被引:2
作者
Nashine, Hemant Kumar [1 ]
Romaguera, Salvador [2 ]
机构
[1] Disha Inst Management & Technol, Dept Math, Raipur 492101, Chhattisgarh, India
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
fixed point; cyclic map; weaker Meir-Keeler function; complete metric space; integral equation; CONTRACTIONS;
D O I
10.1186/1687-1812-2013-224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain fixed point theorems for cyclic self-maps on complete metric spaces involving Meir-Keeler and weaker Meir-Keeler functions, respectively. In this way, we extend several well-known fixed point theorems and, in particular, improve some very recent results on weaker Meir-Keeler functions. Fixed point results for well-posed property and for limit shadowing property are also deduced. Finally, an application to the study of existence and uniqueness of solutions for a class of nonlinear integral equations is presented. MSC: 47H10, 54H25, 54E50, 45G10.
引用
收藏
页数:15
相关论文
共 22 条
[1]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[2]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[3]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[4]   Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces [J].
Chen, Chi-Ming .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[5]   Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces [J].
Chen, Chi-Ming .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[6]  
DEBLASI FS, 1989, CR ACAD SCI I-MATH, V308, P51
[7]   Best proximity points for cyclic Meir-Keeler contractions [J].
Di Bari, Cristina ;
Suzuki, Tomonari ;
Vetro, Calogero .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :3790-3794
[8]   Fixed points for cyclic orbital generalized contractions on complete metric spaces [J].
Karapinar, Erdal ;
Romaguera, Salvador ;
Tas, Kenan .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (03) :552-560
[9]   Fixed point theory for cyclic weak φ-contraction (vol 24, pg 822, 2011) [J].
Karapinar, Erdal ;
Sadarangani, Kishin .
APPLIED MATHEMATICS LETTERS, 2012, 25 (10) :1582-1584
[10]   Fixed point theory for cyclic (I•-ψ)-contractions [J].
Karapinar, Erdal ;
Sadarangani, Kishin .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-8