On binary constructions of quantum codes

被引:58
作者
Cohen, G [1 ]
Encheva, S
Litsyn, S
机构
[1] Ecole Natl Super Telecommun, F-75634 Paris, France
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
关键词
BCH codes; generalized distance; quantum codes;
D O I
10.1109/18.796389
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We improve estimates on the parameters of quantum codes obtained by Steane's construction from binary codes. This yields several new families of quantum codes.
引用
收藏
页码:2495 / 2498
页数:4
相关论文
共 17 条
[1]   Upper bounds on the size of quantum codes [J].
Ashikhmin, A ;
Litsyn, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1206-1215
[2]  
BENNETT CH, 1996, PHYS REV A, V54, P3822
[3]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[4]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[5]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[6]   UPPER-BOUNDS ON GENERALIZED DISTANCES [J].
COHEN, G ;
LITSYN, S ;
ZEMOR, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (06) :2090-2092
[7]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[8]   BOUNDS ON THE MINIMUM SUPPORT WEIGHTS [J].
HELLESETH, T ;
KLOVE, T ;
LEVENSHTEIN, VI ;
YTREHUS, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :432-440
[9]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[10]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201