Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions

被引:146
作者
Hines, Douglas A. [1 ]
Kamat, Prashant V. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame Radiat Lab, Notre Dame, IN 46556 USA
关键词
SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; CORE/SHELL NANOCRYSTALS; OPTICAL-PROPERTIES; CDSE NANOCRYSTALS; PHOTOLUMINESCENCE; CDTE; PHOTOSTABILITY; PERFORMANCE; EFFICIENCY;
D O I
10.1021/jp404031s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the increased interest in quantum dot sensitized solar cells (QDSCs) there comes a need to better understand how surface modification of quantum dots (QDs) can affect the excited state dynamics of QDs, electron transfer at the QD-metal oxide (MO) interface, and overall photoconversion efficiency of QDSCs. We have monitored the surface modification of solution based QDs via the steady state absorption and emission characteristics of colloidal CdSe passivated with beta-alanine (beta-Ala). The trap-remediating nature of the beta-Ala molecule, arising from the Lewis basicity of the amine group, is realized from the hypsochromic shifts seen in excitonic absorption and emission bands as well as an increase in fluorescence quantum yield. Transient absorption measurements of CdSe-TiO2 films prepared with and without beta-Ala as a linker molecule further reveal the role of the surface modifier in influencing excited state electron transfer processes. Electron transfer at this interface was found to be dependent on the method of QD deposition: CdSe-TiO2 (direct deposition, k(et) = 1.5 x 10(10) s(-1)), CdSe-linker-TiO2 (attaching linker molecule first to TiO2 so that beta-Ala interaction is minimal, k(et) = 2.4 x 10(9) s(-1)), or linker-CdSe-linker-TiO2 (linkage via full beta-Ala encapsulation in solution prior to deposition, k(et) = 6.4 x 10(8) s(-1)). These results imply that the surface chemistry of colloidal CdSe plays an important role in mediating electron transfer reactions.
引用
收藏
页码:14418 / 14426
页数:9
相关论文
共 65 条
[31]   Solar cells based on quantum dots:: Multiple exciton generation and intermediate bands [J].
Luque, Antonio ;
Marti, Antonio ;
Nozik, Arthur J. .
MRS BULLETIN, 2007, 32 (03) :236-241
[32]   Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J].
Mattoussi, H ;
Mauro, JM ;
Goldman, ER ;
Anderson, GP ;
Sundar, VC ;
Mikulec, FV ;
Bawendi, MG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (49) :12142-12150
[33]   Quantum dot bioconjugates for imaging, labelling and sensing [J].
Medintz, IL ;
Uyeda, HT ;
Goldman, ER ;
Mattoussi, H .
NATURE MATERIALS, 2005, 4 (06) :435-446
[34]   ELECTRON-TRANSFER PROCESS WITH EXCITED MOLECULES AT SEMICONDUCTOR ELECTRODES [J].
MEMMING, R .
PROGRESS IN SURFACE SCIENCE, 1984, 17 (01) :7-73
[35]   SYNTHESIS AND CHARACTERIZATION OF NEARLY MONODISPERSE CDE (E = S, SE, TE) SEMICONDUCTOR NANOCRYSTALLITES [J].
MURRAY, CB ;
NORRIS, DJ ;
BAWENDI, MG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (19) :8706-8715
[36]   Quantum dot solar cells [J].
Nozik, AJ .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :115-120
[37]   Photoinduced Phase Transfer of Luminescent Quantum Dots to Polar and Aqueous Media [J].
Palui, Goutam ;
Avellini, Tommaso ;
Zhan, Naiqian ;
Pan, Feng ;
Gray, David ;
Alabugin, Igor ;
Mattoussi, Hedi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (39) :16370-16378
[38]   Shape control of CdSe nanocrystals [J].
Peng, XG ;
Manna, L ;
Yang, WD ;
Wickham, J ;
Scher, E ;
Kadavanich, A ;
Alivisatos, AP .
NATURE, 2000, 404 (6773) :59-61
[39]   Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility [J].
Peng, XG ;
Schlamp, MC ;
Kadavanich, AV ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (30) :7019-7029
[40]   Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J].
Peng, ZA ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (01) :183-184