Multiplicity of Solution for a Quasilinear Equation with Singular Nonlinearity

被引:13
作者
Bal, Kaushik [1 ]
Garain, Prashanta [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Quasilinear problem; singular nonlinearity; a priori estimates; topological degree; STRONG COMPARISON PRINCIPLE; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; REGULARITY; EXISTENCE; SOBOLEV; SYMMETRY; MAXIMUM;
D O I
10.1007/s00009-020-01515-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an open, bounded domain Omega in R-N which is strictly convex with smooth boundary, we show that there exists a Lambda > 0 such that for 0 < lambda < Lambda, the quasilinear singular problem admits at least two distinct solutions u and v in W provided delta = 1, 2N+2/N+2 < p < N and p - 1 < q < N-p/N-p - 1.
引用
收藏
页数:20
相关论文
共 38 条
[21]   Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations [J].
Damascelli, L ;
Sciunzi, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) :139-159
[22]  
DEFIGUEIREDO DG, 1982, J MATH PURE APPL, V61, P41
[23]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521
[25]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[26]  
Giacomoni J, 2007, ANN SCUOLA NORM-SCI, V6, P117
[27]  
Gidas B., 1981, Commun. Partial Differ. Equ., V6, P883, DOI [DOI 10.1080/03605308108820196.1, 10.1080/03605308108820196]
[28]   ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (03) :721-730
[29]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[30]   Strong comparison principle for solutions of quasilinear, equations [J].
Lucia, M ;
Prashanth, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (04) :1005-1011