On the Lipschitz stability of (A, B)-invariant subspaces

被引:0
作者
Puerta, Ferran [1 ]
Puerta, Xavier [1 ]
机构
[1] ETSEIB UPC, Dept Matemat Aplicada 1, Barcelona, Spain
关键词
(A; B)-invariant subspace; Lipschitz stability; INVARIANT SUBSPACES; PAIRS;
D O I
10.1016/j.laa.2012.07.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be the set of triples (A, B, S) where S is an (A, B)-invariant subspace and let F-mu be the matrix having minimum norm such that (A + BF mu)(S) subset of S. Then, if theta : T -> M-m,M-n is the map defined by theta(A, B, S) = F-mu and theta is continuous at (A, B, S) a simple necessary and sufficient condition is given for the Lipschitz stability of S. It is shown that this continuity condition is satisfied in an open and dense subset of T and that the set of triples (A, B, S) such that S is Lipschitz stable is also open and dense in T. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 190
页数:9
相关论文
共 13 条
[1]  
Basile G, 1992, Controlled and conditioned invariants in linear system theory
[2]   Simultaneous versal deformations of endomorphisms and invariant subspaces [J].
Compta, A ;
Helmke, U ;
Peña, M ;
Puerta, X .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (2-3) :303-318
[3]   DIFFERENTIABLE FAMILIES OF SUBSPACES [J].
FERRER, J ;
GARCIA, MI ;
PUERTA, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 :229-252
[4]   A homeomorphism between observable pairs and conditioned invariant subspaces [J].
Fuhrmann, PA ;
Helmke, U .
SYSTEMS & CONTROL LETTERS, 1997, 30 (05) :217-223
[5]  
Gohberg I., 1986, INVARIANT SUBSPACES
[6]   Lipschitz stability of controlled invariant subspaces [J].
Gracia, Juan-Miguel ;
Velasco, Francisco E. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (04) :1137-1162
[7]  
Lancaster P., 1985, THEORY MATRICES, V2nd
[8]   A Sufficient Condition for Lipschitz Stability of Controlled Invariant Subspaces [J].
Pena, Marta ;
Puerta, Ferran ;
Puerta, Xavier .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2009, 6 (04) :471-481
[9]  
Rodman L., 1986, STABLE INVARIANT SUB
[10]  
Trumf J., 2002, THESIS U WURZBURG