A 17 GHz molecular rectifier

被引:89
作者
Trasobares, J. [1 ,2 ]
Vuillaume, D. [1 ,2 ]
Theron, D. [1 ,2 ]
Clement, N. [1 ,2 ,3 ]
机构
[1] CNRS, Inst Elect Microelect & Nanotechnol, Ave Poincare,CS60069, F-59652 Villeneuve Dascq, France
[2] Univ Lille 1, Dept Phys, Ave Poincare,CS60069, F-59652 Villeneuve Dascq, France
[3] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
欧盟第七框架计划;
关键词
SELF-ASSEMBLED MONOLAYERS; LARGE ARRAY; RECTIFICATION; TRANSPORT; RESISTANCE; JUNCTIONS; FERROCENE; METAL; DIODE; SPECTROSCOPY;
D O I
10.1038/ncomms12850
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation.
引用
收藏
页数:9
相关论文
共 87 条
  • [1] Electrical conduction through single molecules and self-assembled monolayers
    Akkerman, Hylke B.
    de Boer, Bert
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (01)
  • [2] Terahertz optics taking off
    不详
    [J]. NATURE PHOTONICS, 2013, 7 (09) : 665 - 665
  • [3] Quantum-Chemical Characterization of the Origin of Dipole Formation at Molecular Organic/Organic Interfaces
    Avilov, Igor
    Geskin, Victor
    Cornil, Jerome
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (04) : 624 - 633
  • [4] MOLECULAR RECTIFIERS
    AVIRAM, A
    RATNER, MA
    [J]. CHEMICAL PHYSICS LETTERS, 1974, 29 (02) : 277 - 283
  • [5] Graphene: Electronic and Photonic Properties and Devices
    Avouris, Phaedon
    [J]. NANO LETTERS, 2010, 10 (11) : 4285 - 4294
  • [6] Tuning Rectification in Single-Molecular Diodes
    Batra, Arunabh
    Darancet, Pierre
    Chen, Qishui
    Meisner, Jeffrey S.
    Widawsky, Jonathan R.
    Neaton, Jeffrey B.
    Nuckolls, Colin
    Venkataraman, Latha
    [J]. NANO LETTERS, 2013, 13 (12) : 6233 - 6237
  • [7] SMALL CAVITY NONRESONANT TUNABLE MICROWAVE-FREQUENCY ALTERNATING-CURRENT SCANNING TUNNELING MICROSCOPE
    BUMM, LA
    WEISS, PS
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (08) : 4140 - 4145
  • [8] Energetics of molecular interfaces
    Cahen, David
    Kahn, Antoine
    Umbach, Eberhard
    [J]. MATERIALS TODAY, 2005, 8 (07) : 32 - 41
  • [9] Current-induced structural modification of silicon-on-insulator nanocircuits
    Clement, N
    Francinelli, A
    Tonneau, D
    Scotto, P
    Jandard, F
    Dallaporta, H
    Safarov, V
    Fraboulet, D
    Gautier, J
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (11) : 1727 - 1729
  • [10] Large Array of Sub-10-nm Single-Grain Au Nanodots for use in Nanotechnology
    Clement, Nicolas
    Patriarche, Gilles
    Smaali, Kacem
    Vaurette, Francois
    Nishiguchi, Katsuhiko
    Troadec, David
    Fujiwara, Akira
    Vuillaume, Dominique
    [J]. SMALL, 2011, 7 (18) : 2607 - 2613