A Constraint-Based Approach for the Conciliation of Clinical Guidelines

被引:11
作者
Piovesan, Luca [1 ]
Terenziani, Paolo [1 ]
机构
[1] Univ Piemonte Orientale, Inst Comp Sci, DISIT, Alessandria, Italy
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2016 | 2016年 / 10022卷
关键词
Computer interpretable clinical guidelines; Comorbidities; Combining medical guidelines; Constraint satisfaction problems;
D O I
10.1007/978-3-319-47955-2_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The medical domain often arises new challenges to Artificial Intelligence. An emerging challenge is the support for the treatment of patients affected by multiple pathologies (comorbid patients). In the medical context, clinical practice guidelines (CPGs) are usually adopted to provide physicians with evidence-based recommendations, considering only single pathologies. To support physicians in the treatment of comorbid patients, suitable methodologies must be devised to "merge" CPGs. Techniques like replanning or scheduling, traditionally adopted in AI to "merge" plans, must be extended and adapted to fit the requirements of the medical domain. In this paper, we propose a novel methodology, that we term "conciliation", to merge multiple CPGs, supporting the treatments of comorbid patients.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 50 条
[21]   An interval constraint approach to neural networks [J].
Moa, B .
MLMTA '05: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MACHINE LEARNING MODELS TECHNOLOGIES AND APPLICATIONS, 2005, :87-93
[22]   A process mining approach for clinical guidelines compliance: real-world application in rectal cancer [J].
Savino, Mariachiara ;
Chiloiro, Giuditta ;
Masciocchi, Carlotta ;
Capocchiano, Nikola Dino ;
Lenkowicz, Jacopo ;
Gottardelli, Benedetta ;
Gambacorta, Maria Antonietta ;
Valentini, Vincenzo ;
Damiani, Andrea .
FRONTIERS IN ONCOLOGY, 2023, 13
[23]   Inferring recommendation interactions in clinical guidelines [J].
Zamborlini, Veruska ;
Hoekstra, Rinke ;
Da Silveira, Marcos ;
Pruski, Cedric ;
ten Teije, Annette ;
van Harmelen, Frank .
SEMANTIC WEB, 2016, 7 (04) :421-446
[24]   Design and implementation of a decision support system for breast cancer treatment based on clinical practice guidelines [J].
Skevofilakas, Marios T. ;
Nikita, Konstantina S. ;
Templaleksis, Panagiotis H. ;
Birbas, K. N. ;
Kaklamanos, I. G. ;
Bonatsos, G. N. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2007, 2 :S342-S344
[25]   Assessment of a new constraint satisfaction problem based active demand control approach to address distribution network constraints [J].
Luo, Tianyu ;
Dolan, Michael ;
Davidson, Euan ;
Ault, Graham .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2015, 9 (15) :2363-2373
[26]   Fuzzy constraint satisfaction approach for landmark recognition in mobile robotics [J].
Otero, Abraham ;
Felix, Paulo ;
Regueiro, Carlos ;
Rodriguez, Miguel ;
Barro, Senen .
AI COMMUNICATIONS, 2006, 19 (03) :275-289
[27]   Computer-interpretable clinical guidelines: A methodological review [J].
Peleg, Mor .
JOURNAL OF BIOMEDICAL INFORMATICS, 2013, 46 (04) :744-763
[28]   Using TimeML to Support the Modeling of Computerized Clinical Guidelines [J].
Wenzina, Reinhardt ;
Kaiser, Katharina .
E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 :8-12
[29]   Evaluation of New Hypertension Guidelines on the Prevalence and Control of Hypertension in a Clinical HIV Cohort: A Community-Based Study [J].
Mallipeddi, Vishnu Priya ;
Levy, Matthew ;
Byrne, Morgan ;
Monroe, Anne ;
Happ, Lindsey Powers ;
Moeng, Letumile Rodgers ;
Castel, Amanda D. ;
Horberg, Michael ;
Wilcox, Ronald .
AIDS RESEARCH AND HUMAN RETROVIRUSES, 2024, 40 (04) :223-234
[30]   Compositional Diffusion-Based Continuous Constraint Solvers [J].
Yang, Zhutian ;
Mao, Jiayuan ;
Du, Yilun ;
Wu, Jiajun ;
Tenenbaum, Joshua B. ;
Lozano-Perez, Tomas ;
Kaelbling, Leslie Pack .
CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229