A Fast Blockchain-Based Federated Learning Framework With Compressed Communications

被引:16
|
作者
Cui, Laizhong [1 ]
Su, Xiaoxin [1 ]
Zhou, Yipeng [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Macquarie Univ, Sch Comp, FSE, Macquarie Pk, NSW 2113, Australia
基金
中国国家自然科学基金;
关键词
Federated learning; blockchain; compression; convergence; OPTIMIZATION; DESIGN;
D O I
10.1109/JSAC.2022.3213345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, blockchain-based federated learning (BFL) has attracted intensive research attention due to that the training process is auditable and the architecture is serverless avoiding the single point failure of the parameter server in vanilla federated learning (VFL). Nevertheless, BFL tremendously escalates the communication traffic volume because all local model updates (i.e., changes of model parameters) obtained by BFL clients will be transmitted to all miners for verification and to all clients for aggregation. In contrast, the parameter server and clients in VFL only retain aggregated model updates. Consequently, the huge communication traffic in BFL win inevitably impair the training efficiency and hinder the deployment of BFL in reality. To improve the practicality of BFL, we are among the first to propose a fast blockchain-based communication-efficient federated learning framework by compressing communications in BFL, called BCFL. Meanwhile, we derive the convergence rate of BCFL with non-convex loss. To maximize the final model accuracy, we further formulate the problem to minimize the training loss of the convergence rate subject to a limited training time with respect to the compression rate and the block generation rate, which is a bi-convex optimization problem and can be efficiently solved. To the end, to demonstrate the efficiency of BCFL, we carry out extensive experiments with standard CIFAR-10 and FEMNIST datasets. Our experimental results not only verify the correctness of our analysis, but also manifest that BCFL can remarkably reduce the communication traffic by 95-98% or shorten the training time by 90-95% compared with BFL.
引用
收藏
页码:3358 / 3372
页数:15
相关论文
共 50 条
  • [1] FLoBC: A Decentralized Blockchain-Based Federated Learning Framework
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    El-Batt, Tamer
    El-Batt, Tamer
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 85 - 92
  • [2] Blockchain-Based Architectural Framework for Vertical Federated Learning
    钱辰
    朱雯晶
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (03) : 211 - 219
  • [3] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [4] BAFL: An Efficient Blockchain-Based Asynchronous Federated Learning Framework
    Xu, Chenhao
    Qu, Youyang
    Eklund, Peter W.
    Xiang, Yong
    Gao, Longxiang
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [5] BCAFL: A Blockchain-Based Framework for Asynchronous Federated Learning Protection
    Yun, Jian
    Lu, Yusheng
    Liu, Xinyu
    ELECTRONICS, 2023, 12 (20)
  • [6] A Federated Learning Framework with Blockchain-Based Auditable Participant Selection
    Zeng, Huang
    Zhang, Mingtian
    Liu, Tengfei
    Yang, Anjia
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 5125 - 5142
  • [7] A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus
    Li, Yuzheng
    Chen, Chuan
    Liu, Nan
    Huang, Huawei
    Zheng, Zibin
    Yan, Qiang
    IEEE NETWORK, 2021, 35 (01): : 234 - 241
  • [8] DSFL: a blockchain-based data sharing and federated learning framework
    Niu, Haiqian
    Zhang, Xing
    Chu, Zhiguang
    Shi, Wei
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [9] Blockchain-Based Decentralized Federated Learning
    Dirir, Ahmed
    Salah, Khaled
    Svetinovic, Davor
    Jayaraman, Raja
    Yaqoob, Ibrar
    Kanhere, Salil S.
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 99 - 106
  • [10] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)