Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq

被引:64
作者
Ding, Yiliang [1 ,2 ,3 ]
Kwok, Chun Kit [2 ,3 ]
Tang, Yin [1 ,3 ,4 ]
Bevilacqua, Philip C. [2 ,3 ,5 ]
Assmann, Sarah M. [1 ,3 ,4 ,5 ]
机构
[1] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr RNA Mol Biol, University Pk, PA 16802 USA
[4] Penn State Univ, Bioinformat & Genom Grad Program, University Pk, PA 16802 USA
[5] Penn State Univ, Plant Biol Grad Program, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
SECONDARY STRUCTURE PREDICTION; DIMETHYL SULFATE; SHAPE; TRANSCRIPTOME; DNA; MECHANISMS; FEATURES; REVEALS;
D O I
10.1038/nprot.2015.064
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Structure-seq is a high-throughput and quantitative method that provides genome-wide information on RNARNARNA structure at single-nucleotide resolution. Structure-seq can be performed both in vivo and in vitro to study RNARNARNA structure-function relationships, RNARNARNA regulation of gene expression and RNARNARNA processing. Structure-seq can be carried out by an experienced molecular biologist with a basic understanding of bioinformatics. Structure-seq begins with chemical RNARNARNA structure probing under single-hit kinetics conditions. Certain chemical modifications, e.g., methylation of the Watson-Crick face of unpaired adenine and cytosine residues by dimethyl sulfate, result in a stop in reverse transcription. Modified RNARNARNA is then subjected to reverse transcription using random hexamer primers, which minimizes 3' end bias; reverse transcription proceeds until it is blocked by a chemically modified residue. Resultant cDNANAs are amplified by adapter-based PCRPCRPCR and subjected to high-throughput sequencing, subsequently allowing retrieval of the structural information on a genome-wide scale. In contrast to classical methods that provide information only on individual transcripts, a single structure-seq experiment provides information on tens of thousands of RNARNARNA structures in similar to 1 month. Although the procedure described here is for Arabidopsis thaliana seedlings in vivo, structure-seq is widely applicable, thereby opening new avenues to explore RNARNARNA structure-function relationships in living organisms.
引用
收藏
页码:1050 / 1066
页数:17
相关论文
共 50 条
  • [31] LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq
    Bitton, Danny A.
    Rallis, Charalampos
    Jeffares, Daniel C.
    Smith, Graeme C.
    Chen, Yuan Y. C.
    Codlin, Sandra
    Marguerat, Samuel
    Baehler, Juerg
    GENOME RESEARCH, 2014, 24 (07) : 1169 - 1179
  • [32] Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing
    Li, Xinbei
    Mills, William T.
    Jin, Daniel S.
    Meffert, Mollie K.
    CELL REPORTS METHODS, 2024, 4 (08):
  • [33] The development of genome-wide single nucleotide polymorphisms in blue wildebeest using the DArTseq platform
    Deventer, Riana van
    Rhode, Clint
    Marx, Munro
    Roodt-Wilding, Rouvay
    GENOMICS, 2020, 112 (05) : 3455 - 3464
  • [34] Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms
    Yamamoto, Toshio
    Nagasaki, Hideki
    Yonemaru, Jun-ichi
    Ebana, Kaworu
    Nakajima, Maiko
    Shibaya, Taeko
    Yano, Masahiro
    BMC GENOMICS, 2010, 11
  • [35] RNA structure profiling at single-cell resolution reveals new determinants of cell identity
    Wang, Jiaxu
    Zhang, Yu
    Zhang, Tong
    Tan, Wen Ting
    Lambert, Finnlay
    Darmawan, Jefferson
    Huber, Roland
    Wan, Yue
    NATURE METHODS, 2024, 21 (03) : 411 - 422
  • [36] Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing( scBS-seq)
    Clark, Stephen J.
    Smallwood, Sebastien A.
    Lee, Heather J.
    Krueger, Felix
    Reik, Wolf
    Kelsey, Gavin
    NATURE PROTOCOLS, 2017, 12 (03) : 534 - U159
  • [37] Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq)
    Mahat, Dig Bijay
    Kwak, Hojoong
    Booth, Gregory T.
    Jonkers, Iris H.
    Danko, Charles G.
    Patel, Ravi K.
    Waters, Colin T.
    Munson, Katie
    Core, Leighton J.
    Lis, John T.
    NATURE PROTOCOLS, 2016, 11 (08) : 1455 - 1476
  • [38] Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach
    Kim, Jung-A
    Roy, Neha Samir
    Lee, Inn-hye
    Choi, Ah-Young
    Choi, Beom-Soon
    Yu, Yei-Soo
    Park, Nam-il
    Park, Kyong-Cheul
    Kim, Soonok
    Yang, Hee-sun
    Choi, Ik-Young
    GENOMICS, 2019, 111 (04) : 973 - 979
  • [39] Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions
    Twittenhoff, Christian
    Brandenburg, Vivian B.
    Righetti, Francesco
    Nuss, Aaron M.
    Mosig, Axel
    Dersch, Petra
    Narberhaus, Franz
    NUCLEIC ACIDS RESEARCH, 2020, 48 (12) : E71 - E71
  • [40] In Vivo and In Vitro Genome-Wide Profiling of RNA Secondary Structures Reveals Key Regulatory Features in Plasmodium falciparum
    Qi, Yanwei
    Zhang, Yuhong
    Zheng, Guixing
    Chen, Bingxia
    Zhang, Mengxin
    Li, Jian
    Peng, Tao
    Huang, Jun
    Wang, Xinhua
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11