Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq

被引:64
|
作者
Ding, Yiliang [1 ,2 ,3 ]
Kwok, Chun Kit [2 ,3 ]
Tang, Yin [1 ,3 ,4 ]
Bevilacqua, Philip C. [2 ,3 ,5 ]
Assmann, Sarah M. [1 ,3 ,4 ,5 ]
机构
[1] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr RNA Mol Biol, University Pk, PA 16802 USA
[4] Penn State Univ, Bioinformat & Genom Grad Program, University Pk, PA 16802 USA
[5] Penn State Univ, Plant Biol Grad Program, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
SECONDARY STRUCTURE PREDICTION; DIMETHYL SULFATE; SHAPE; TRANSCRIPTOME; DNA; MECHANISMS; FEATURES; REVEALS;
D O I
10.1038/nprot.2015.064
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Structure-seq is a high-throughput and quantitative method that provides genome-wide information on RNARNARNA structure at single-nucleotide resolution. Structure-seq can be performed both in vivo and in vitro to study RNARNARNA structure-function relationships, RNARNARNA regulation of gene expression and RNARNARNA processing. Structure-seq can be carried out by an experienced molecular biologist with a basic understanding of bioinformatics. Structure-seq begins with chemical RNARNARNA structure probing under single-hit kinetics conditions. Certain chemical modifications, e.g., methylation of the Watson-Crick face of unpaired adenine and cytosine residues by dimethyl sulfate, result in a stop in reverse transcription. Modified RNARNARNA is then subjected to reverse transcription using random hexamer primers, which minimizes 3' end bias; reverse transcription proceeds until it is blocked by a chemically modified residue. Resultant cDNANAs are amplified by adapter-based PCRPCRPCR and subjected to high-throughput sequencing, subsequently allowing retrieval of the structural information on a genome-wide scale. In contrast to classical methods that provide information only on individual transcripts, a single structure-seq experiment provides information on tens of thousands of RNARNARNA structures in similar to 1 month. Although the procedure described here is for Arabidopsis thaliana seedlings in vivo, structure-seq is widely applicable, thereby opening new avenues to explore RNARNARNA structure-function relationships in living organisms.
引用
收藏
页码:1050 / 1066
页数:17
相关论文
共 50 条
  • [21] Genome-wide single-nucleotide polymorphism map for Candida albicans
    Forche, A
    Magee, PT
    Magee, BB
    May, G
    EUKARYOTIC CELL, 2004, 3 (03) : 705 - 714
  • [22] Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution
    Belitsky, Boris R.
    Sonenshein, Abraham L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) : 7026 - 7031
  • [23] A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq
    Su, Zhipeng
    Zhu, Jiawen
    Xu, Zhuofei
    Xiao, Ran
    Zhou, Rui
    Li, Lu
    Chen, Huanchun
    PLOS ONE, 2016, 11 (03):
  • [24] Revealing RNA structure-function relationships in vivo and genome-wide
    Bevilacqua, Philip
    Su, Zhao
    Ritchey, Laura
    Tang, Yin
    Assmann, Sarah
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [25] StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo
    Tang, Yin
    Bouvier, Emil
    Kwok, Chun Kit
    Ding, Yiliang
    Nekrutenko, Anton
    Bevilacqua, Philip C.
    Assmann, Sarah M.
    BIOINFORMATICS, 2015, 31 (16) : 2668 - 2675
  • [26] Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms
    Badner, J. A.
    Koller, D.
    Foroud, T.
    Edenberg, H.
    Nurnberger, J. I., Jr.
    Zandi, P. P.
    Willour, V. L.
    McMahon, F. J.
    Potash, J. B.
    Hamshere, M.
    Grozeva, D.
    Green, E.
    Kirov, G.
    Jones, I.
    Jones, L.
    Craddock, N.
    Morris, D.
    Segurado, R.
    Gill, M.
    Sadovnick, D.
    Remick, R.
    Keck, P.
    Kelsoe, J.
    Ayub, M.
    MacLean, A.
    Blackwood, D.
    Liu, C-Y
    Gershon, E. S.
    McMahon, W.
    Lyon, G. J.
    Robinson, R.
    Ross, J.
    Byerley, W.
    MOLECULAR PSYCHIATRY, 2012, 17 (08) : 818 - 826
  • [27] Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms
    J A Badner
    D Koller
    T Foroud
    H Edenberg
    J I Nurnberger
    P P Zandi
    V L Willour
    F J McMahon
    J B Potash
    M Hamshere
    D Grozeva
    E Green
    G Kirov
    I Jones
    L Jones
    N Craddock
    D Morris
    R Segurado
    M Gill
    D Sadovnick
    R Remick
    P Keck
    J Kelsoe
    M Ayub
    A MacLean
    D Blackwood
    C-Y Liu
    E S Gershon
    W McMahon
    G J Lyon
    R Robinson
    J Ross
    W Byerley
    Molecular Psychiatry, 2012, 17 : 818 - 826
  • [28] Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq
    Lu, Tingting
    Lu, Guojun
    Fan, Danlin
    Zhu, Chuanrang
    Li, Wei
    Zhao, Qiang
    Feng, Qi
    Zhao, Yan
    Guo, Yunli
    Li, Wenjun
    Huang, Xuehui
    Han, Bin
    GENOME RESEARCH, 2010, 20 (09) : 1238 - 1249
  • [29] CRISPR-Mediated Profiling of Viral RNA at Single-Nucleotide Resolution
    Chen, Duo
    Huang, Wanting
    Zhang, Yun
    Chen, Bo
    Tan, Jie
    Yuan, Quan
    Yang, Yanbing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (30)
  • [30] Genome-wide single-nucleotide polymorphism studies in rheumatology: Hype or hope?
    Mil, Annette H. M. van der Helm-van
    Padyukov, Leonid
    Toes, Rene. M.
    Klareskog, Lars
    Huizinga, Tom W. J.
    ARTHRITIS AND RHEUMATISM, 2008, 58 (09): : 2591 - 2597