A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy

被引:33
|
作者
Zhang, Maoyi [1 ,2 ,4 ]
Bao, Chengmin [2 ,5 ]
Hu, Chaosheng [2 ,5 ]
Huang, YongAn [3 ]
Yang, Ya [2 ,5 ]
Su, Yewang [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[5] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Water droplet; Triboelectric nanogenerator; Cantilever beam; Response time; Hybridized nanogenerator; GEOTHERMAL-ENERGY; SOLAR-ENERGY; WIND ENERGY; PERFORMANCE; GENERATION; HARVESTER; RAINDROP; POWER;
D O I
10.1016/j.nanoen.2022.107992
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water droplet energy has received much attention as a newborn renewable energy source. Triboelectric nano -generators (TENGs) demonstrates enormous application in scavenging mechanical energy. Nowadays, the water droplet nanogenerator based on liquid-solid TENG has been greatly improved. However, these water droplet nanogenerators scavenge the mechanical energy of liquid-solid contact of water droplets by TENG, but not the deformation energy of the substrate. Here, we propose a new design strategy to increase the current of the water droplet nanogenerator through simultaneous scavenging of the mechanical energy of the liquid-solid contact and the deformation energy. A droplet-based triboelectric-piezoelectric hybridized nanogenerator (TPiHNG) with cantilever beam structure was fabricated under the strategy. The TPiHNG has a significantly higher current compared to TENG. The response time difference between piezoelectric nanogenerator (PiENG) and TENG is proposed for the first time as an important parameter of TPiHNG. This work provides a novel approach to scavenge water droplet energy more efficiently.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Stretching-enhanced triboelectric nanogenerator for efficient wind energy scavenging and ultrasensitive strain sensing
    Zhao, Xue
    Zhang, Ding
    Xu, Suwen
    Qian, Weiqi
    Han, Wei
    Wang, Zhong Lin
    Yang, Ya
    NANO ENERGY, 2020, 75
  • [42] A Triboelectric Nanogenerator Based on Pendulum-Rotation Transmission Mechanism for Harvesting Continuous Low-Frequency Mechanical Energy
    Qu, Zhigang
    Wang, Xiaopeng
    Gao, Yanzhe
    An, Yang
    Fu, Yunkun
    Yin, Wuliang
    Liu, Ying
    Li, Xingfei
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (11)
  • [43] Energy harvesting through the triboelectric nanogenerator (TENG) based on polyurethane/cellulose nanocrystal
    Blancas-Flores, Jose Miguel
    Morales-Rivera, Juan
    Rocha-Ortiz, Gilberto
    Ahuactzi, Iran Fernandez Hernandez
    Cabrera-Chavarria, Jose Jesus
    Andrade-Melecio, Hugo Armando
    Astudillo-Sanchez, Pablo Daniel
    Antolin-Ceron, Victor Hugo
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2024, 13 (06): : 1162 - 1174
  • [44] Highly conductive liquid metal electrode based stretchable piezoelectric-enhanced triboelectric nanogenerator for harvesting irregular mechanical energy
    Yang, Changjun
    He, Jian
    Guo, Yonghong
    Zhao, Dongyang
    Hou, Xiaojuan
    Zhong, Jixin
    Zhang, Shengnan
    Cui, Min
    Chou, Xiujian
    MATERIALS & DESIGN, 2021, 201
  • [45] Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator
    Vu Nguyen
    Kelly, Steve
    Yang, Rusen
    APL MATERIALS, 2017, 5 (07):
  • [46] Implanting a solid Li-ion battery into a triboelectric nanogenerator for simultaneously scavenging and storing wind energy
    Gao, Tiantian
    Zhao, Kun
    Liu, Xi
    Yang, Ya
    NANO ENERGY, 2017, 41 : 210 - 216
  • [47] Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing
    Chen, Baodong
    Tang, Wei
    Wang, Zhong Lin
    MATERIALS TODAY, 2021, 50 : 224 - 238
  • [48] Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy
    Cao, Ran
    Zhou, Tao
    Wang, Bin
    Yin, Yingying
    Yuan, Zuqing
    Li, Congju
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (08) : 8370 - 8378
  • [49] Highly stretchable PTFE particle enhanced triboelectric nanogenerator for droplet energy harvestings
    Yang, Changjun
    Wang, Yamei
    Wang, Yan
    Zhao, Zehui
    Zhang, Liwen
    Chen, Huawei
    NANO ENERGY, 2023, 118
  • [50] Hybridized mechanical and solar energy-driven self-powered system for high-efficiency hydrogen peroxide production based on triboelectric nanogenerator
    Guo, Ru
    Yuan, Jialu
    Liu, Qiong
    Luo, Hang
    Zhang, Dou
    NANO ENERGY, 2025, 134