A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy

被引:33
|
作者
Zhang, Maoyi [1 ,2 ,4 ]
Bao, Chengmin [2 ,5 ]
Hu, Chaosheng [2 ,5 ]
Huang, YongAn [3 ]
Yang, Ya [2 ,5 ]
Su, Yewang [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[5] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Water droplet; Triboelectric nanogenerator; Cantilever beam; Response time; Hybridized nanogenerator; GEOTHERMAL-ENERGY; SOLAR-ENERGY; WIND ENERGY; PERFORMANCE; GENERATION; HARVESTER; RAINDROP; POWER;
D O I
10.1016/j.nanoen.2022.107992
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water droplet energy has received much attention as a newborn renewable energy source. Triboelectric nano -generators (TENGs) demonstrates enormous application in scavenging mechanical energy. Nowadays, the water droplet nanogenerator based on liquid-solid TENG has been greatly improved. However, these water droplet nanogenerators scavenge the mechanical energy of liquid-solid contact of water droplets by TENG, but not the deformation energy of the substrate. Here, we propose a new design strategy to increase the current of the water droplet nanogenerator through simultaneous scavenging of the mechanical energy of the liquid-solid contact and the deformation energy. A droplet-based triboelectric-piezoelectric hybridized nanogenerator (TPiHNG) with cantilever beam structure was fabricated under the strategy. The TPiHNG has a significantly higher current compared to TENG. The response time difference between piezoelectric nanogenerator (PiENG) and TENG is proposed for the first time as an important parameter of TPiHNG. This work provides a novel approach to scavenge water droplet energy more efficiently.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects
    Wang, Shuhua
    Wang, Zhong Lin
    Yang, Ya
    ADVANCED MATERIALS, 2016, 28 (15) : 2881 - 2887
  • [2] Photovoltaic-triboelectric hybridized nanogenerator for simultaneously scavenging light and liquid-droplet energies*
    Bao, Chengmin
    Dan, Huiyu
    Zhang, Maoyi
    Li, Chuanbo
    Wang, Zhong Lin
    Yang, Ya
    NANO ENERGY, 2023, 106
  • [3] A triboelectric-piezoelectric hybrid nanogenerator for rotational energy harvesting based on bistable cantilever beam
    Bai, Quan
    Zhou, Teng
    Gan, Chongzao
    Wang, Qiong
    Zheng, Xuejun
    Wei, Ke-Xiang
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [4] Hybridized Electromagnetic - Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors
    Wang, Xue
    Wang, Shuhua
    Yang, Ya
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (04) : 4553 - 4562
  • [5] A collision-free gallop-based triboelectric-piezoelectric hybrid nanogenerator
    Wang, Weizhe
    Tang, Wei
    Yao, Zhaohui
    ISCIENCE, 2022, 25 (11)
  • [6] Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators
    Li, Jianping
    Cheng, Li
    Wan, Nen
    Ma, Jijie
    Hu, Yili
    Wen, Jianming
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [7] Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source
    Zhong, Xiandai
    Yang, Ya
    Wang, Xue
    Wang, Zhong Lin
    NANO ENERGY, 2015, 13 : 771 - 780
  • [8] Hybrid triboelectric-piezoelectric nanogenerator for long-term load monitoring in total knee replacements
    Chahari, Mahmood
    Salman, Emre
    Stanacevic, Milutin
    Willing, Ryan
    Towfighian, Shahrzad
    SMART MATERIALS AND STRUCTURES, 2024, 33 (05)
  • [9] A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control
    Liu, Long
    Shi, Qiongfeng
    Lee, Chengkuo
    NANO RESEARCH, 2021, 14 (11) : 4227 - 4235
  • [10] Hybridized Electromagnetic-Triboelectric Nanogenerator for Scavenging Biomechanical Energy for Sustainably Powering Wearable Electronics
    Zhang, Kewei
    Wang, Xue
    Yang, Ya
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (04) : 3521 - 3529