Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection

被引:0
|
作者
De, Uday Chand [1 ]
Mondal, Abul Kalam [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India
[2] Dum Dum Motijheel Rabindra Mahavidyalaya, Dept Math, Kolkata 700019, W Bengal, India
来源
关键词
Codazzi equations; Gauss equations; hypersurfaces; Kenmotsu manifold; quarter-symmetric non-metric connection; SUBMANIFOLDS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The object of the present paper is to define a quarter-symmetric non-metric connection in a Kenmotsu manifold and consider non-invariant and anti-invariant hypersurfaces of Kenmotsu manifold endowed with a quarter-symmetric non-metric connection. Finally, we obtain the Gauss and Codazzi equations with respect to a quarter-symmetric non-metric connection.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 50 条
  • [1] Some Properties of (ϵ)-Kenmotsu Manifolds With Quarter-Symmetric Non-Metric Connection
    Singh, Abhishek
    Gautam, Sangeeta
    Kumar, Lalit
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (02): : 739 - 752
  • [2] ON A TYPE OF QUARTER-SYMMETRIC NON-METRIC phi-CONNECTION ON A KENMOTSU MANIFOLD
    Barman, Ajit
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (03): : 1 - 11
  • [3] CERTAIN CONDITION OF SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION
    Singh, Abhishek
    Gautam, Sangeeta
    Patel, Shraddha
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2024, 23 (1-2): : 92 - 103
  • [4] A QUARTER SYMMETRIC NON-METRIC CONNECTION IN A KENMOTSU MANIFOLD
    Dwivedi, Mohit Kumar
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (01): : 115 - 124
  • [5] ON phi-SYMMETRIC KENMOTSU MANIFOLDS WITH RESPECT TO QUARTER-SYMMETRIC METRIC CONNECTION
    Prakasha, D. G.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (01): : 88 - 96
  • [6] TANGENT BUNDLE ENDOWED WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION ON AN ALMOST HERMITIAN MANIFOLD
    Khan, Mohammad Nazrul Islam
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 167 - 178
  • [7] On weak symmetries of Kenmotsu Manifolds with respect to quarter-symmetric metric connection
    Prakasha, D. G.
    Vikas, K.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 79 - 90
  • [8] CERTAIN CURVATURE CONDITIONS ON KENMOTSU MANIFOLDS ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION
    Zhao, Peibiao
    De, Uday Chand
    Mandal, Krishanu
    Han, Yanling
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 104 (118): : 169 - 181
  • [9] η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION
    Bahadir, Oguzhan
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (03): : 601 - 620
  • [10] Quarter-Symmetric Non-Metric Connection of Non-Integrable Distributions
    Chen, Shuo
    Liu, Haiming
    SYMMETRY-BASEL, 2024, 16 (07):