Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly

被引:42
作者
Henderson, J. [1 ]
Shi, S. [1 ]
Cakmaktepe, S. [1 ,2 ]
Crawford, T. M. [1 ]
机构
[1] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA
[2] Kilis 7 Aralik Univ, Dept Phys, TR-79100 Kilis, Turkey
基金
美国国家科学基金会;
关键词
PARTICLES; SUPERSTRUCTURES; SEPARATION; TRANSPORT; ARRAYS; FILM;
D O I
10.1088/0957-4484/23/18/185304
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a novel nanomanufacturing technique that incorporates patterned arrays built entirely from Fe3O4 nanoparticles into a flexible and transparent polymer film. First, the nanoparticles are patterned using the enormous magnetic field gradients at the surface of commercial disk drive media, and then the resulting architecture is transferred to the surface of a polymer film by spin-coating and peeling. Since the particles are immobilized by the field gradients during the spin-coating process, the patterned array is preserved after peeling. To demonstrate the potential of this technology, we fabricate a 5 mm diameter all-nanoparticle diffraction grating capable of producing a white-light optical spectrum. We also demonstrate several extensions to this technology, where, by adding an external magnetic field during assembly, we create both periodic variations in topography, as well as a nanocomposite with two vertically and horizontally separated nanoparticle layers. As this technique leverages the nanometer resolution inherent in current magnetic recording technology, strong potential exists for low-cost nanomanufacturing of optical and electronic devices from a variety of nanomaterials with similar to 10 nm resolution.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering [J].
Alsberg, Eben ;
Feinstein, Efraim ;
Joy, M. P. ;
Prentiss, Mara ;
Ingber, Donald E. .
TISSUE ENGINEERING, 2006, 12 (11) :3247-3256
[2]   On inhomogeneities in the magnetization of ferromagnetic materials [J].
Bitter, F .
PHYSICAL REVIEW, 1931, 38 (10) :1903-1905
[3]   Self-assembled ferrofluid lithography: patterning micro and nanostructures by controlling magnetic nanoparticles [J].
Chang, Chih-Hao ;
Tan, Chee-Wee ;
Miao, Jianmin ;
Barbastathis, George .
NANOTECHNOLOGY, 2009, 20 (49)
[4]   Nanomanufacturing of random branching material architectures [J].
Doumanidis, Charalabos C. .
MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) :467-478
[5]   Magnetic field induced concentration gradients in magnetic nanoparticle suspensions: Theory and experiment [J].
Erb, Randall M. ;
Sebba, David S. ;
Lazarides, Anne A. ;
Yellen, Benjamin B. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
[6]   Magnetic assembly of colloidal superstructures with multipole symmetry [J].
Erb, Randall M. ;
Son, Hui S. ;
Samanta, Bappaditya ;
Rotello, Vincent M. ;
Yellen, Benjamin B. .
NATURE, 2009, 457 (7232) :999-1002
[7]   E-beam writing: A next-generation lithography approach for thin-film head critical features [J].
Fontana, RE ;
Katine, J ;
Rooks, M ;
Viswanathan, R ;
Lille, J ;
MacDonald, S ;
Kratschmer, E ;
Tsang, C ;
Nguyen, S ;
Robertson, N ;
Kasiraj, P .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (01) :95-100
[8]   Dynamical Formation of Spatially Localized Arrays of Aligned Nanowires in Plastic Films with Magnetic Anisotropy [J].
Fragouli, Despina ;
Buonsanti, Raffaella ;
Bertoni, Giovanni ;
Sangregorio, Claudio ;
Innocenti, Claudia ;
Falqui, Andrea ;
Gatteschi, Dante ;
Cozzoli, Pantaleo Davide ;
Athanassiou, Athanassia ;
Cingolani, Roberto .
ACS NANO, 2010, 4 (04) :1873-1878
[9]   Analysis of particle transport in a magnetophoretic microsystem [J].
Furlani, EP .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (02) :1-11
[10]   Novel Phosphonate-Functional Poly(ethylene oxide)-Magnetite Nanoparticles Form Stable Colloidal Dispersions in Phosphate-Buffered Saline [J].
Goff, J. D. ;
Huffstetler, P. P. ;
Miles, W. C. ;
Pothayee, N. ;
Reinholz, C. M. ;
Ball, S. ;
Davis, R. M. ;
Riffle, J. S. .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4784-4795