A stabilized finite volume method for the evolutionary Stokes-Darcy system

被引:10
作者
Li, Yi [1 ]
Hou, Yanren [1 ]
Li, Rui [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
关键词
Non-stationary Stokes-Darcy problem; Finite volume method; The lowest equal-order finite element triples; Error estimates; CONDUCTION-CONVECTION PROBLEM; ELEMENT-METHOD; COUPLED STOKES; EQUATIONS; MODEL; DISCRETIZATION; FORMULATION; FLOWS;
D O I
10.1016/j.camwa.2017.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a stabilized fully discrete finite volume method based on two local Gauss integrals fora non-stationary Stokes-Darcy problem. This stabilized method is free of stabilized parameters and uses the lowest equal-order finite element triples P1-P1-P1 for approximating the velocity, pressure and hydraulic head of the Stokes-Darcy model. Under a modest time step restriction in relation to physical parameters, we give the stability analysis and the error estimates for the stabilized finite volume scheme by means of a relationship between finite volume and finite element approximations with the lower order elements. Finally, a series of numerical experiments are provided to demonstrate the validity of the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:596 / 613
页数:18
相关论文
共 25 条
[1]  
An Jing, 2011, Mathematica Numerica Sinica, V33, P213
[2]  
[Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
[3]   Mortar finite element discretization of a model coupling Darcy and Stokes equations [J].
Bernardi, Christine ;
Rebollo, Tomas Chacon ;
Hecht, Frederic ;
Mghazli, Zoubida .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03) :375-410
[4]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[5]   Stokes-Darcy boundary integral solutions using preconditioners [J].
Boubendir, Yassine ;
Tlupova, Svetlana .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8627-8641
[6]   MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS IN 3 VARIABLES [J].
BREZZI, F ;
DOUGLAS, J ;
DURAN, R ;
FORTIN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :237-250
[7]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256
[8]   Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow [J].
Cesmelioglu, Aycil ;
Riviere, Beatrice .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) :115-140
[9]  
DOUGLAS J, 1989, MATH COMPUT, V52, P495, DOI 10.1090/S0025-5718-1989-0958871-X
[10]   A modified local and parallel finite element method for the mixed Stokes-Darcy model [J].
Du, Guangzhi ;
Hou, Yanten ;
Zuo, Liyun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) :1129-1145