Point potential for the generator of a stable process

被引:1
作者
Cranston, M. [1 ]
Molchanov, S. [2 ]
Squartini, N. [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
Point potential; Self-adjoint extension; Stable process; Pinned polymer; MODEL;
D O I
10.1016/j.jfa.2013.10.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a closed self-adjoint extension of the infinitesimal generator of a symmetric stable process whose domain core is C-c(infinity)(R-d \ {0}). Such extensions of the Laplacian have been used in models of the hydrogen atom and more recently have modeled pinning at the origin of polymer models based on Brownian motion. We also outline the construction of pinned polymer models based on the symmetric stable processes, even when the underlying stable process does not possess a local time at the origin. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1238 / 1256
页数:19
相关论文
共 15 条
[1]  
Albeverio S., 2005, Solvable models in quantum mechanics, V2nd, DOI [10.1090/chel/350, DOI 10.1090/CHEL/350]
[2]  
[Anonymous], THEORETICAL MATH PHY
[3]  
[Anonymous], 2004, Levy processes and stochastic calculus
[4]  
Bertoin J., 1996, Levy Processes
[5]  
Cranston M, 2007, CRM PROC & LECT NOTE, V42, P97
[6]  
Cranston M, 2010, RANDOM OPERATORS STO, V18, P73, DOI [10.1515/ROSE.2010.73, 10.1515/ROSE.2010.004]
[7]   Continuous model for homopolymers [J].
Cranston, M. ;
Koralov, L. ;
Molchanov, S. ;
Vainberg, B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) :2656-2696
[8]  
Davies E.B., 1989, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics 92, V92, DOI DOI 10.1017/CBO9780511566158
[9]   WALKS, WALLS, WETTING, AND MELTING [J].
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :667-729
[10]  
Giacomin G., 2007, Random polymer models